Skip to main content

Hubble discovers over 1,000 new asteroids thanks to photobombing

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble’s camera.

This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern. NASA, ESA, P. G. Martín (Autonomous University of Madrid), J. DePasquale (STScI). Acknowledgment: A. Filippenko (University of California, Berkeley)

To work through so much data, the professional astronomers recruited citizen scientists to help sift through an archive of Hubble images and look for indications of asteroids as part of the Hubble Asteroid Hunter project. They also used machine learning to pick out the signs of an asteroid “photobombing” a Hubble image, by leaving a streak across an image as the asteroid passes by. That allowed them to find a surprisingly large number of objects.

“We are getting deeper into seeing the smaller population of main-belt asteroids. We were surprised to see such a large number of candidate objects,” said research lead author Pablo García Martín of the Autonomous University of Madrid, Spain, in a statement. “There was some hint that this population existed, but now we are confirming it with a random asteroid population sample obtained using the whole Hubble archive. This is important for providing insights into the evolutionary models of our solar system.”

By looking at the streak shape left in the images, some over multiple exposures, astronomers can calculate the orbits of the asteroids and how far away they are. Then by comparing the brightness of each object to its distance, they can work out its size.

“Asteroid positions change with time, and therefore you cannot find them just by entering coordinates, because at different times they might not be there,” said research co-author Bruno Merín, of the European Space Astronomy Centre in Madrid, Spain. “As astronomers we don’t have time to go looking through all the asteroid images. So we got the idea to collaborate with more than 10,000 citizen-science volunteers to peruse the huge Hubble archives.”

The research is published in the journal Astronomy and Astrophysics.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
NASA automated system predicts asteroid impact over Germany
This map shows the location where the small asteroid 2024 BX1 harmlessly impacted Earth’s atmosphere over Germany, about 37 miles (60 kilometers) west of Berlin, on Jan. 21. A NASA system called Scout predicted the impact time and site within 1 second and about 330 feet (100 meters).

Earth is frequently bombarded by small asteroids, which burn up harmlessly in the atmosphere. However, identifying and tracking these asteroids is an important step in protecting the Earth against the threat of larger and potentially more dangerous impacts. NASA recently predicted the impact of a small asteroid that struck Germany using its impact prediction system, Scout.

"A small asteroid about 3 feet (1 meter) in size disintegrated harmlessly over Germany on Sunday, Jan. 21, at 1:32 a.m. local time (CET)," NASA wrote in an update. "At 95 minutes before it impacted Earth’s atmosphere, NASA’s Scout impact hazard assessment system, which monitors data on potential asteroid discoveries, gave advance warning as to where and when the asteroid would impact. This is the eighth time in history that a small Earth-bound asteroid has been detected while still in space, before entering and disintegrating in our atmosphere."

Read more