Skip to main content

James Webb investigates mystery of where Earth’s water comes from

As wild as it might sound, scientists have a theory that water on Earth didn’t actually originate here: the first water may have been brought to our planet by a comet. To understand whether that is the case, astronomers look to the comets commonly found in the asteroid belt between Mars and Jupiter, and recent research using the James Webb Space Telescope has identified a clue in this long-standing mystery.

Researchers used Webb’s Near-Infrared Spectrograph instrument to look at the composition of a comet in the asteroid belt, and they found evidence of water vapor around a comet in this area for the first time. Looking at Comet 238P/Read showed nearby vapor, supporting the idea that water could be carried by such a comet. While many comets come from more distant locations like the far-off Oort cloud, which is a long way from the sun where it is easier for water ice to survive, this particular comet hangs out in the main asteroid belt.

This illustration of Comet 238P/Read shows the main belt comet sublimating—its water ice vaporizing as its orbit approaches the Sun. This is significant, as the sublimation is what distinguishes comets from asteroids, creating their distinctive tail and hazy halo, or coma. It is especially important for Comet Read, as it is one of 16 identified main belt comets found in the asteroid belt, as opposed to the colder Kuiper Belt or Oort Cloud, more distant from the Sun. Comet Read was one of three comets used to define the class of main belt comets in 2006.
This illustration of Comet 238P/Read shows the main belt comet sublimating—its water ice vaporizing as its orbit approaches the Sun. This is significant, as the sublimation is what distinguishes comets from asteroids, creating their distinctive tail and hazy halo, or coma. It is especially important for Comet Read, as it is one of 16 identified main-belt comets found in the asteroid belt, as opposed to the colder Kuiper Belt or Oort Cloud, more distant from the Sun. NASA, ESA

That helps astronomers understand how water could have arrived on Earth. “Our water-soaked world, teeming with life and unique in the universe as far as we know, is something of a mystery – we’re not sure how all this water got here,” explained one of the researchers, Stefanie Milam, in a statement. “Understanding the history of water distribution in the solar system will help us to understand other planetary systems, and if they could be on their way to hosting an Earth-like planet.”

“With Webb’s observations of Comet Read, we can now demonstrate that water ice from the early solar system can be preserved in the asteroid belt,” said fellow researchers Michael Kelly.

However, there was something odd about the data from this comet. While the results showed water vapor was present, there wasn’t any carbon dioxide detected, which had been expected. Comets usually carry around 10%  carbon dioxide, so it’s odd not to find any. It might be that the comet formed in an unusually warm area where carbon dioxide wasn’t present, or it could be that the comet used to have carbon dioxide but lost it over time as it warmed.

To find out more, the researchers want to look at more comets in the asteroid belt to see if they have similar compositions — something that is now possible thanks to Webb’s powerful instruments.

“These objects in the asteroid belt are small and faint, and with Webb, we can finally see what is going on with them and draw some conclusions. Do other main belt comets also lack carbon dioxide? Either way, it will be exciting to find out,” said co-author Heidi Hammel.

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more
James Webb captures an extremely distant triple-lensed supernova
This observation from the NASA/ESA/CSA James Webb Space Telescope features the massive galaxy cluster RX J2129. Due to Gravitational lensing, this observation contains three different images of the same supernova-hosting galaxy, which you can see in closer detail here. Gravitational lensing occurs when a massive celestial body causes a sufficient curvature of spacetime to bend the path of light travelling past or through it, almost like a vast lens. In this case, the lens is the galaxy cluster RX J2129, located around 3.2 billion light-years from Earth in the constellation Aquarius. Gravitational lensing can cause background objects to appear strangely distorted, as can be seen by the concentric arcs of light in the upper right of this image.

Since the start of science operations of the James Webb Space Telescope in July last year, we've been treated to a flood of images showing space targets from nebulae to deep fields. This month, Webb researchers shared a new image captured by the telescope's NIRCam instrument which shows a both gorgeous field of galaxies and an important astronomical phenomenon called gravitational lensing.

The image features a huge galaxy cluster called RX J2129, located 3.2 billion light-years away, which is acting as a magnifying glass and bending light coming from more distant galaxies behind it. That's what is causing the stretched-out shape of some of the galaxies toward the top right of the image.

Read more
James Webb spots ‘universe-breaking’ massive early galaxies
Images of six candidate massive galaxies, seen 500-700 million years after the Big Bang. One of the sources (bottom left) could contain as many stars as our present-day Milky Way, according to researchers, but it is 30 times more compact.

The James Webb Space Telescope continues to throw up surprises, and recently it has been used to spot some very old galaxies which have astonished astronomers. The galaxy candidates are far more massive than anyone expected would be possible, challenging assumptions about the early universe.

An international team of astronomers spotted six potential galaxies in a region of space close to the Big Dipper constellation from just 500 to 700 million years after the Big Bang, when the universe was still in its infancy. “These objects are way more massive​ than anyone expected,” said one of the researchers, Joel Leja of Penn State. “We expected only to find tiny, young, baby galaxies at this point in time, but we’ve discovered galaxies as mature as our own in what was previously understood to be the dawn of the universe.”

Read more