Skip to main content

Saturn’s rings are raining down particles on its atmosphere

Saturn’s famous rings don’t just give the planet its distinctive look — they also affect its weather. New research using the Hubble Space Telescope shows that the icy rings actually heat up Saturn’s atmosphere, a phenomenon that could help us learn more about distant exoplanets as well.

Saturn’s rings are made up of small particles of ice, forming ring shapes that reach 175,000 miles away from the planet. And it seems that it is these icy particles that are, somewhat counterintuitively, causing heating in the planet’s atmosphere. Researchers looked at observations from Hubble as well as the Cassini and Voyager missions and saw more ultraviolet radiation than they expected in Saturn’s upper atmosphere, indicating heating there.

Related Videos
This is a composite image showing the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017.
This is a composite image showing the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017. SCIENCE: NASA, ESA, Lotfi Ben-Jaffel (IAP & LPL)

This heating is thought to be caused by particles from the rings, which are raining down onto the atmosphere due to forces like solar winds or micrometeorites. Over time, the rings are gradually losing particles as they fall into the planet’s atmosphere and heating the hydrogen there — and while scientists already knew about the degrading rings, the heating effect is a new finding.

“Though the slow disintegration of the rings is well known, its influence on the atomic hydrogen of the planet is a surprise. From the Cassini probe, we already knew about the rings’ influence. However, we knew nothing about the atomic hydrogen content,” said lead author of the research, Lotfi Ben-Jaffel of the Institute of Astrophysics in Paris, in a statement.

These indications of ultraviolet emissions had been seen before in observations from Cassini and the two Voyager probes which passed Saturn in the 1980s. But scientists hadn’t been sure whether the effect was real, or just a result of noise. By looking at these data alongside measurements from Hubble, the researchers were able to see the effect was a real one.

“When everything was calibrated, we saw clearly that the spectra are consistent across all the missions. This was possible because we have the same reference point, from Hubble, on the rate of transfer of energy from the atmosphere as measured over decades,” Ben-Jaffel said. “It was really a surprise for me. I just plotted the different light distribution data together, and then I realized, wow — it’s the same.”

One exciting element of this finding is that it could be applied to planets outside our solar system, called exoplanets, as well. If researchers can spot similar ultraviolet radiation coming from distant planets, that could suggest that they have rings of their own.

“We are just at the beginning of this ring characterization effect on the upper atmosphere of a planet,” Ben-Jaffel said. “We eventually want to have a global approach that would yield a real signature about the atmospheres on distant worlds. One of the goals of this study is to see how we can apply it to planets orbiting other stars. Call it the search for ‘exo-rings.'”

The research is published in the Planetary Science Journal.

Editors' Recommendations

Hubble spies on 25 hot Jupiters to learn about their atmospheres
Archival observations of 25 hot Jupiters by the NASA/ESA Hubble Space Telescope.

In the last decade, we've become remarkably good at identifying exoplanets, or planets outside our solar system. In fact, we recently passed an impressive milestone of over 5,000 confirmed exoplanets discovered. However, most of these detections tell us little about the planets we've identified -- typically only their distance from their host star, and their mass or size.

The next big step in exoplanet research is learning more about these planets, and in particular what their atmospheres are like. This is one of the major aims of the James Webb Space Telescope when it's ready for science this summer, but in the meantime, researchers are getting creative to answer these questions. Recently, astronomers using data from the Hubble Space Telescope have investigated 25 exoplanets to find out about their atmospheres.

Read more
Hubble captures a serene-looking galaxy with a monster at its heart
The spiral galaxy M91 fills the frame of this Wide Field Camera 3 observation from the NASA/ESA Hubble Space Telescope. M91 lies approximately 55 million light-years from Earth in the constellation Coma Berenices and – as is evident in this image – is a barred spiral galaxy. While M91’s prominent bar makes for a spectacular galactic portrait, it also hides an astronomical monstrosity. Like our own galaxy, M91 contains a supermassive black hole at its center. A 2009 study using archival Hubble data found that this central black hole weighs somewhere between 9.6 and 38 million times as much as the Sun.

This week's image from the Hubble Space Telescope shows the galaxy M91, a barred spiral galaxy in the constellation of Coma Berenices. It is relatively nearby to us, at 55 million light-years away, and it is part of our local supercluster. The M in its name stands for Messier, after the French astronomer Charles Messier who is famous for his catalog of astronomical objects he produced in the 1770s and 1780s. The designations of the objects he cataloged, from M1 to M110, are still used by astronomers today.

While it is undeniably a handsome galaxy and shows the classic bar or bright region of dust and gas at its center where stars are formed, this particular galaxy was observed by Hubble in order to learn about the monstrous black hole at its center. Like almost all galaxies, including the Milky Way, M91 has a supermassive black hole at its heart. The mass of M91's supermassive black hole was calculated using Hubble data in 2009 and found to be enormous, at between 9.6 and 38 million times the mass of our Sun.

Read more
This extreme exoplanet’s atmosphere is being sunburned by its host star
This is an artist's illustration of the planet KELT-20b which orbits a blue-white star. The giant planet is so close to its star (5 million miles) the torrent of ultraviolet radiation from the star heats the planet's atmosphere to over 3,000 degrees Fahrenheit.

In the wide range of planets we've observed beyond our solar system, some of the most extreme are of a type called hot Jupiters. These are gas giants which are similar to Jupiter but orbit so close to their stars that a year on one lasts less than 10 days. On these planets, temperatures can reach thousands of degrees Fahrenheit, leading to some weird and wonderful effects.

This is an artist's illustration of the planet KELT-20b which orbits a blue-white star. The giant planet is so close to its star (5 million miles) that the torrent of ultraviolet radiation from the star heats the planet's atmosphere to over 3,000 degrees Fahrenheit. NASA, ESA, Leah Hustak (STScI)

Read more