Skip to main content

James Webb captures an extremely distant triple-lensed supernova

Since the start of science operations of the James Webb Space Telescope in July last year, we’ve been treated to a flood of images showing space targets from nebulae to deep fields. This month, Webb researchers shared a new image captured by the telescope’s NIRCam instrument which shows a both gorgeous field of galaxies and an important astronomical phenomenon called gravitational lensing.

The image features a huge galaxy cluster called RX J2129, located 3.2 billion light-years away, which is acting as a magnifying glass and bending light coming from more distant galaxies behind it. That’s what is causing the stretched-out shape of some of the galaxies toward the top right of the image.

The massive galaxy cluster RX J2129.
This observation from the NASA/ESA/CSA James Webb Space Telescope features the massive galaxy cluster RX J2129. Gravitational lensing occurs when a massive celestial body causes a sufficient curvature of spacetime to bend the path of light traveling past or through it, almost like a vast lens. In this case, the lens is the galaxy cluster RX J2129, located around 3.2 billion light-years from Earth in the constellation Aquarius. ESA/Webb, NASA & CSA, P. Kelly

One of the galaxies being lensed is particularly notable because it contains something special. Toward the top right, the same galaxy is imaged three times, due to the lensing effect. Within this triple-lensed galaxy is an exceptionally bright event, a Type Ia supernova. These occur when a small but dense star called a white dwarf is part of a binary system with another star and pulls material away from its companion. This continues until there is too much mass in the white dwarf and it collapses, then it explodes in a hugely bright flash of light.

The light from these Type Ia supernovae is important for two reasons: firstly, it is so bright that it can be seen even from another galaxy, and secondly, it is (usually) of a consistent luminosity. That means that astronomers can look at a very distant Type Ia supernova and accurately work out how far away it is, which makes it useful for measuring cosmological distances. These objects are called “standard candles.”

This image captures an extremely distant Type Ia supernova, and that is useful to tell researchers how strong the gravitational lensing effect must be. To confirm their results, researchers also collected data using another of Webb’s instruments, its NIRSpec spectrogram, to measure the composition of the supernova.

Editors' Recommendations

James Webb Telescope catches a glimpse of young version of the Milky Way
This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler galaxy provides a snap-shot of an infant Milky Way as it accretes mass over cosmic time.

Data from the James Webb Space Telescope has given a glimpse into what our galaxy was like in its formative years. Webb observed a galaxy called The Sparkler, which is analogous to what the Milky Way would have been like when it was young, when it had less mass and only a handful of globular clusters.

This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler Galaxy provides a snapshot of an infant Milky Way as it accretes mass over cosmic time. James Josephides, Swinburne University.

Read more
A failed Webb telescope calibration leads to the discovery of this tiny asteroid
An asteroid roughly the size of Rome’s Colosseum — between 300 to 650 feet (100 to 200 meters) in length — has been detected by an international team of European astronomers using NASA's James Webb Space Telescope. They used data from the calibration of the MIRI instrument, in which the team serendipitously detected an interloping asteroid. The object is likely the smallest observed to date by Webb and may be an example of an object measuring under 1 kilometer in length within the main asteroid belt, located between Mars and Jupiter. More observations are needed to better characterize this object’s nature and properties.

With any new technology, there are bound to be failures -- and that's true of cutting-edge astronomy instruments like the James Webb Space Telescope as well. But failures can have a silver lining, as was demonstrated recently when an unsuccessful attempt to calibrate a Webb instrument to a well-known asteroid turned up a delightful surprise: the discovery of a new, different asteroid that is just a few hundred feet across.

An asteroid roughly the size of Rome’s Colosseum — between 300 to 650 feet in length — has been detected by a team of European astronomers using NASA's James Webb Space Telescope. They used data from the calibration of the MIRI instrument to serendipitously detect an interloping asteroid. The object is likely the smallest observed by Webb, and may be an example of an object measuring under 1 kilometer in length within the main asteroid belt, located between Mars and Jupiter.  ARTWORK: NASA, ESA, CSA, N. Bartmann (ESA/Webb), Martin Kornmesser (ESA), Serge Brunier (ESO), Nick Risinger (Photopic Sky Survey)

Read more
Hubble is investigating mysterious ‘spokes’ in Saturn’s rings
NASA's Hubble Space Telescope has observation time devoted to Saturn each year, thanks to the Outer Planet Atmospheres Legacy (OPAL) program, and the dynamic gas giant planet always shows us something new. This latest image heralds the start of Saturn's "spoke season" with the appearance of two smudgy spokes in the B ring, on the left in the image.

Saturn is famous for its beautiful rings, but these rings have a strange feature: "spokes" which appear intermittently. These spots in the rings can be light or dark and can look like blobs or like lines stretching radially outward from the planet, and they appear in a regular cycle related to the planet's equinox. Now, the Hubble Space Telescope has the opportunity to study these oddities of the rings in more detail and researchers hope they can learn more about what causes these features.

NASA's Hubble Space Telescope has observation time devoted to Saturn each year, thanks to the Outer Planet Atmospheres Legacy (OPAL) program, and the dynamic gas giant planet always shows us something new. This latest image heralds the start of Saturn's "spoke season" with the appearance of two smudgy spokes in the B ring, on the left in the image. SCIENCE: NASA, ESA, Amy Simon (NASA-GSFC) IMAGE PROCESSING: Alyssa Pagan (STScI)

Read more