UCLA researchers identify a gene as a potential target in treatment-resistant brain cancer glioblastoma multiforme

Research led by doctors and scientists at UCLA Jonsson Comprehensive Cancer Center and the UCLA Jane & Terry Semel Institute for Neuroscience & Human Behavior have identified a gene that may provide a therapeutic target for the deadly, treatment-resistant brain cancer glioblastoma multiforme (GBM).

The gene, P300, enables GBM cells that have been damaged by radiation therapy to recover by rearranging DNA, and initiating a molecular mechanism that refortifies tumor cells for growth and survival. Blocking P300 disrupted its ability to set this process in motion, according to the researchers, who conducted their studies in mouse models and in human GBM cells. Their results appear online in Nature Communications.

Although glioblastoma is considered rare - about 13,000 new cases are expected to be diagnosed in the United States this year, according to the National Brain Tumor Society - it is the most common primary brain tumor in adults. There is no known cure, and the average length of survival is measured in months. GBM cells and their precursors, glioma stem cells (GSC), quickly adapt and recover from injury, so chemotherapy and radiation therapy, which may initially slow a tumor's progress, can ultimately contribute to growth and recurrence..

By performing single-cell transcriptomic sequencing, which can identify molecular changes in cancerous cells, the UCLA-led research team showed that radiation therapy-induced stress promotes phenotypic conversion of glioma stem cells to resemble two types of cells that are normally found in blood vessels (vascular endothelial-like cells and pericyte-like cells). They found that these converted cells promoted tumor growth and post-treatment recurrence. The conversion was brought about by changes within specific vascular gene regions in a process mediated by the gene P300, or P300 HAT (histone acetyltransferase).

"Our findings show at the single-cell level that 'radiation-stress' alters the functional states of glioma cells, but instead of reconstituting the vascular system to carry blood supply, as has sometimes been theorized, these converted cells provide trophic support that enables the cancer cells to survive and grow under the hostile conditions created by radiation," said senior author Harley Kornblum, M.D., Ph.D., a researcher at the UCLA Jonsson Comprehensive Cancer Center and the UCLA Brain Research Institute.

"Just as P300 plays a key role in changing the molecular landscape of glioma stem cells, inhibiting the gene’s function appears to block the phenotypic conversion. This suggests that small molecules that inhibit P300 HAT activity may be useful in preventing tumor growth and adaptive resistance of GBM," said Dr. Sree Deepthi Muthukrishnan, Assistant Project Scientist and the first author of the study.

While the authors were able to identify some candidate factors expressed by the vascular-like cells and their experiments show those factors’ potential role in promoting proliferation of radiated tumor cells, they say that further studies will be needed to fully uncover the underlying mechanisms at play. Importantly though, the factors that mediate the trophic actions of radiation-induced vascular-like cells would likely be targets for potential therapeutic intervention to prevent GBM relapse.

Muthukrishnan SD, Kawaguchi R, Nair P et al.
P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells.
Nat Commun 13, 6202 (2022). 10.1038/s41467-022-33943-0

Most Popular Now

Pfizer to supply Global Fund up to 6 million PAXLO…

Pfizer Inc. (NYSE: PFE) announced today an agreement to supply up to six million treatment courses of its COVID-19 oral treatment, PAXLOVID™ (nirmatrelvir [PF-07321332] t...

Evusheld long-acting antibody combination approved…

AstraZeneca's Evusheld (tixagevimab and cilgavimab, formerly AZD7442), a long-acting antibody combination, has been approved in the European Union (EU) for the treatment ...

Breakthrough brings potential glioblastoma drug in…

Glioblastoma, the most common cancerous brain tumor in adults, is an aggressive disease - patients survive an average of just 15 months once they are diagnosed. Despite m...

Similar medications cost more for humans compared …

In a research letter published in JAMA Internal Medicine, University of Minnesota researchers compared the prices of 120 medications commonly used in humans and pets. The...

Bird's enzyme points toward novel therapies

Thank the rare crested ibis for a clue that could someday help our bodies make better drugs. The species of bird is the only one known to naturally produce an enzyme ...

Non-opioid compounds squelch pain without sedation

A newly identified set of molecules alleviated pain in mice while avoiding the sedating affect that limits the use of opiates, according to a new study led by researchers...

National CDC-funded study confirms that mRNA vacci…

The first large, real-world study of the effectiveness of mRNA COVID-19 vaccines during pregnancy found these vaccines, especially two initial doses followed by a booster...

Shutting down backup genes leads to cancer remissi…

The way that tumor cells enable their uncontrolled growth is also a weakness that can be harnessed to treat cancer, researchers at the University of Michigan and Indiana ...

Pfizer completes acquisition of Biohaven Pharmaceu…

Pfizer Inc. (NYSE: PFE) announced the completion of its acquisition of Biohaven Pharmaceutical Holding Company Ltd., the maker of NURTEC® ODT (rimegepant), an innovative ...

The Nobel Prize in Physiology or Medicine 2022

The Nobel Assembly at Karolinska Institutet has today decided to award the 2022 Nobel Prize in Physiology or Medicine to Svante Pääbo for his discoveries concerning the g...

Another monkey virus could be poised for spillover…

An obscure family of viruses, already endemic in wild African primates and known to cause fatal Ebola-like symptoms in some monkeys, is “poised for spillover” to humans, ...

Discovering new cancer treatments in the "dar…

Cancer is in Switzerland the second leading cause of death. Among the different types of cancers, non-small cell lung cancer (NSCLC) kills the most patients and remains l...