New method of nasal vaccine delivery could lead to better vaccines for HIV and COVID-19

A University of Minnesota assistant professor is part of a team that has developed a new way to effectively deliver vaccines through mucosal tissues in the nose that could lead to better protection against pathogens like human immunodeficiency virus (HIV) and SARS-CoV-2, the virus that causes COVID-19.

The researchers tested the technology on mice and non-human primates and found that the vaccine generated strong immune responses, paving the way for further study and development of nasal vaccines.

The study is published in Science Translational Medicine, an interdisciplinary medical journal published by the American Association for the Advancement of Science (AAAS).

Historically, nasal vaccines - which would be administered through a nebulizer or spray - have been difficult to make successfully. The mucus in the nose typically clears out or breaks down the vaccine’s components, such as protein antigens, before they can access underlying tissues to activate the body’s immune cells.

However, nasal vaccines have the potential to generate even more immunity than current vaccines administered by injection with needles. This is because for many diseases that are transmitted through the upper respiratory system, such as COVID-19, nasal vaccines have teh potential to trigger immune responses in the exact areas of infection - the nose, mouth, and lungs. Some nasal vaccines do exist, but most use live attenuated pathogens, which cannot be given to people who are immunocompromised.

"Traditional vaccines that are injected are not usually geared toward establishing immunity in these mucosal tissues," explained Brittany Hartwell, first author on the paper and an assistant professor in the University of Minnesota Twin Cities Department of Biomedical Engineering. "They're more geared toward establishing immunity in the blood - sort of like a backup defense. But the idea of establishing immunity in the mucosal areas, like the nose, is that it establishes more of a frontline defense that can better protect against transmission of these diseases."

Hartwell said that with this new vaccine, not only did they establish strong mucosal antibody responses, but they also activated really strong antibody responses in the blood.

"So, it's kind of like we're establishing a frontline and backup defense at the same time," she said.

Hartwell and her team have found a way to help vaccine antigens bypass the mucosal barriers in the nose by engineering them to bind onto a protein called albumin, which naturally occurs in the human body and has the ability to get around these roadblocks. The antigens could then effectively “hitchhike” on albumin to get to their destination - the immune tissues underlying in the nose - to start activating an immune response.

And, the researchers’ vaccine proved effective at generating immunity not just in the nose, but in other mucosal tissues of the body as well, which include the upper respiratory system, lungs, and genitourinary tract. The latter is especially relevant for vaccinating against a virus like HIV, which is transmitted through those sites.

"This is really significant for the field of mucosal vaccination,” Hartwell said. “It shows something new, that we’ve designed a vaccine capable of overcoming barriers to delivery that have historically plagued the development of other mucosal vaccines. It’s particularly relevant right now because we’re all living in the midst of the COVID pandemic that’s continuing to affect our lives. And as long as there’s spread and transmission, the virus has a chance to evolve into new variants with the potential to be harmful. This research shows the development of a slightly different kind of vaccine that could provide even better protection than what we currently have by blocking transmission, preventing us from catching and passing the virus onto others.”

Hartwell is continuing to study and develop this new vaccine technology in her lab at the University of Minnesota Twin Cities and hopes to adapt it to other diseases and illnesses in the future.

The research was funded by the National Institutes of Health’s National Institute of Allergy and Infectious Diseases; the National Cancer Institute; the Marble Center for Cancer Nanomedicine; the U. S. Army Research Office through the Institute for Soldier Nanotechnologies at the Massachusetts Institute of Technology; the Ragon Institute of MIT, Massachusetts General Hospital, and Harvard University; and the Bill and Melinda Gates Foundation.

Hartwell BL, Melo MB, Xiao P, Lemnios AA, Li N, Chang JYH, Yu J, Gebre MS, Chang A, Maiorino L, Carter C, Moyer TJ, Dalvie NC, Rodriguez-Aponte SA, Rodrigues KA, Silva M, Suh H, Adams J, Fontenot J, Love JC, Barouch DH, Villinger F, Ruprecht RM, Irvine DJ. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci Transl Med. 2022 Jul 20;14(654):eabn1413. doi: 10.1126/scitranslmed.abn1413

Most Popular Now

Pfizer and BioNTech complete submission to Europea…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced they have completed a submission to the European Medicines Agency (EMA) for an Omicron-adapted biva...

Lilly will supply an additional 150,000 doses of b…

Eli Lilly and Company (NYSE: LLY) announced a modified purchase agreement with the U.S. government to supply an additional 150,000 doses of bebtelovimab for approximately...

Bayer to sell men's health product Nebido™ to Grün…

Bayer and Grünenthal have entered into a definitive agreement regarding the sale of Bayer's men's health product Nebido™ (testosterone undecanoate), for a purchase price ...

AstraZeneca to acquire TeneoTwo and its clinical-s…

AstraZeneca announced an agreement to acquire TeneoTwo, Inc. (TeneoTwo)i, including its Phase I clinical-stage CD19/CD3 T-cell engager, TNB-486, currently under evaluatio...

Demonstration of a potent, universal coronavirus m…

The SARS-CoV-2 that causes COVID-19 has killed 6.3 million people worldwide since 2019, painfully highlighting the vulnerability of humanity to novel coronaviruses. Re...

The fourth COVID-19 vaccine reduces the risk of de…

A new study by Tel Aviv University and Ben Gurion University of the Negev, in collaboration with the Israeli Ministry of Health, has found that the fourth COVID-19 vaccin...

Vaccine protection against COVID-19 short-lived, b…

Since COVID-19 vaccines first became available to protect against infection and severe illness, there has been much uncertainty about how long the protection lasts, and w...

SARS-CoV-2 hijacks nanotubes between neurons to in…

COVID-19 often leads to neurological symptoms, such as a loss of taste or smell, or cognitive impairments (including memory loss and concentration difficulties), both dur...

Anti-inflammatory compound shows potential in trea…

An anti-inflammatory compound may have the potential to treat systemic inflammation and brain injury in patients with severe COVID-19 and significantly reduce their chanc...

Vaccine-induced immune response to omicron wanes s…

Although COVID-19 booster vaccinations in adults elicit high levels of neutralizing antibodies against the Omicron variant of SARS-CoV-2, antibody levels decrease substan...

Scientists develop new biomimetic formulation for …

Glioblastoma multiforme (GBM) is an aggressive brain cancer with a poor prognosis and few treatment options. New and effective approaches for GBM treatment are therefore ...

Pfizer and BioNTech advance COVID-19 vaccine strat…

Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced that the companies have initiated a randomized, active-controlled, observer-blind, Phase 2 study to...