Recurring brain tumor growth is halted with new drug

When a non-metastatic brain tumor - a meningioma - recurs after surgery and radiation treatment, a patient is out of options. No drugs are approved for these aggressive tumors, which occur in up to 20% of cases and can lead to patient disability or even death.

But now Northwestern Medicine scientists, in an international collaboration with scientists at the University of California, San Francisco and the University of Hong Kong, have identified a drug that inhibits growth of the most aggressive meningiomas and how to most accurately identify which meningiomas will respond to the drug.

The drug is a newer cancer treatment called abemaciclib.

The scientists demonstrated the effectiveness of the drug in select patients, mouse models, a 3-D living tissue brain tumor (organoids) and cell cultures.

Investigators discovered meningiomas can be divided into molecular subgroups with different clinical outcomes and recurrence rates. This new method of classifying tumors allows scientists to predict recurrence more accurately than the current method of classifying the tumor.

Currently, after surgery, doctors examine a specimen of a tumor under a microscope and grade it one, two or three in its aggressiveness. But the grade is only about 70% accurate, meaning some tumors will behave in a way that doesn’t fit with how it appears under the microscope.

"Our study identifies which patients we should treat with this drug, because their tumor will likely respond to it," said study leader and corresponding author, Dr. Stephen Magill, an assistant professor of neurological surgery at Northwestern University Feinberg School of Medicine and a Northwestern Medicine physician. "We now have the potential to give them options and hope for a longer, symptom-free life."

Magill also is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The paper was published today in Nature Genetics.

Meningiomas are the most common primary (non-metastatic) tumor in the central nervous system, with about 31,000 people diagnosed with a meningioma every year in the U.S. The symptoms are headaches, seizures or neurological deficits (weakness, vision loss, double vision or sensory changes).

The drug is a cell cycle inhibitor, meaning it blocks the cell division cycle and inhibits tumor growth.

"Eventually we hope to tailor medical therapy to the genetic changes within each individual person's meningioma," Magill said.

Investigators studied molecular changes in the tumor to understand what drives its growth and design therapies that target the Achilles' heel of the tumor.

"We can find a weakness in that tumor, put a stick in the spokes and stop it from growing," Magill said.

The new study was conducted by doing DNA methylation profiling and RNA sequencing on 565 meningiomas. This enabled investigators to see what genes are expressed by the tumor and the level of expression, revealing a signature of the DNA.

"By doing that we found three separate groups of meningiomas based off their biology," Magill said. "For each group, we found a different biological mechanism promoting the tumors’ growth, with each group having a different clinical outcome."

These groups are different than the previous grading system and "are more accurate at predicting the clinical behavior of the tumor," Magill said.

Scientists discovered that aggressive tumors have multiple molecular changes in a common pathway of cell division that enables the cells to divide more and come back after surgery.

"We wondered if by inhibiting that pathway we could stop the tumors from growing," Magill said. "We tested that in multiple ways and found it was true in patients, mouse models and cell cultures."

Mice with meningiomas treated with the medication lived longer and their tumors didn’t grow as rapidly. The drug was also used off label as compassionate use in several patients whose tumors decreased in size and whose symptoms improved, suggesting the drug should be considered for clinical trials, Magill said.

The next steps in the research are to validate these findings in additional populations and build on them to determine whether we can use molecular features to predict which meningioma patients should be treated with radiation in addition to surgery.

Scientists plan to translate these findings and methods to make this molecular profiling generalizable and available to all patients with meningioma.

Scientists validated their findings in an independent cohort by collaborating with investigators at the University of Hong Kong.

The research was supported by grants 1F32CA213944, 5K08CA212279 and 1R01CA262311 from the National Cancer Institute of the National Institutes of Health, the Linda Wolfe Memorial Meningioma Research Project and the Lou and Jean Malnati Brain Tumor Institute at Northwestern University.

Choudhury A, Magill ST, Eaton CD et al.
Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities.
Nat Genet (2022). doi: 10.1038/s41588-022-01061-8

Most Popular Now

GSK reaches agreement to acquire late-stage biopha…

GlaxoSmithKline plc (LSE/NYSE: GSK) and Sierra Oncology, Inc (Nasdaq: SRRA) announced that the companies have entered into an agreement under which GSK will acquire Sierr...

Sanofi launches first-in-pharma Diversity, Equity …

Sanofi launches its Diversity, Equity & Inclusion (DE&I) Board, the first-of-its-kind in the pharmaceutical industry to feature outside advisors. Sanofi’s DE&I Board will...

Evusheld significantly protected against symptomat…

Detailed results from the PROVENT Phase III pre-exposure prophylaxis (prevention) trial showed that AstraZeneca's Evusheld (tixagevimab and cilgavimab), formerly AZD7442...

Novartis provides more than USD 25 million in medi…

Novartis announced that it condemns the war in Ukraine: "The continued acts of unprovoked violence are harming innocent people, and this defies our mission to improve hum...

A new toolkit to engineer safe and efficient thera…

Therapies based on engineered immune cells have recently emerged as a promising approach in the treatment of cancer. Compared to traditional drugs, engineered immune cell...

COVID-19 vaccine protects kids and teens from seve…

Results of a new multicenter study published in the New England Journal of Medicine found that vaccination with a primary series of the Pfizer-BioNTech mRNA COVID-19 vacc...

Asthma drug can block crucial SARS-CoV-2 protein

A drug used to treat asthma and allergies can bind to and block a crucial protein produced by the virus SARS-CoV-2, and reduce viral replication in human immune cells, ac...

About 30% of COVID patients develop "Long COV…

New UCLA research finds that 30% of people treated for COVID-19 developed Post Acute Sequelae of COVID-19 (PASC), most commonly known as “Long COVID.” People with a histo...

A smarter way to develop new drugs

Pharmaceutical companies are using artificial intelligence to streamline the process of discovering new medicines. Machine-learning models can propose new molecules that ...

New COVID-19 nasal spray outperforms current antib…

A new protein-based antiviral nasal spray developed by researchers at Northwestern University, University of Washington and Washington University at St. Louis is being ad...

Tumors change their metabolism to spread more effe…

Cancer cells can disrupt a metabolic pathway that breaks down fats and proteins to boost the levels of a byproduct called methylmalonic acid, thereby driving metastasis, ...

Pfizer and Biohaven's VYDURA® (rimegepant) granted…

Pfizer Inc. (NYSE: PFE) and Biohaven Pharmaceutical Holding Company Ltd. (NYSE: BHVN) today announced that the European Commission (EC) has granted marketing authorizatio...