News Release 

DFG extends funding for CRCs at University and University Medical Center G

German Research Foundation reconfirms support for Göttingen CRCs

University of Göttingen

Grant Announcement

The German Research Foundation (DFG) has extended its funding for two Göttingen Collaborative Research Centres (CRC) from 1 July 2021. This means that CRC 1073 "Atomic Scale Control of Energy Conversion" at the Faculty of Physics at Göttingen University will go into its third successful funding period. The CRC started in October 2013, coordinated by Professor Christian Jooß from the Institute of Material Physics. CRC 1286 "Quantitative Synaptology" at the University Medical Center Göttingen (UMG) has won support for a second funding period. The research lead is Professor Silvio Rizzoli, Director of the Institute of Neuro- and Sensory Physiology and research lead for the Centre for Biostructural Imaging of Neurodegeneration (BIN) at UMG. The funding amounts to around ten million euros per year over four years.

CRC 1073 Atomic Scale Control of Energy Conversion

The CRC Atomic Scale Control of Energy Conversion is based at the Faculty of Physics and the Faculty of Chemistry of the University of Göttingen, as well as the Max Planck Institute for Biophysical Chemistry (MPIBPC) in Göttingen. In addition, one research group each from the Clausthal University of Technology, the German Electron Synchrotron (DESY) in Hamburg and the Helmholtz-Zentrums für Materialien und Energie in Berlin are involved.

New materials that enable better control of energy conversion are of great importance for advanced applications in the fields of both solar cells and electrochemical energy storage. In recent years, the CRC has succeeded in making a whole series of breakthroughs in the fundamental understanding of the elementary steps in energy conversion in these fields. At the heart of this is the understanding that materials can exist in a state markedly different from their standard state of equilibrium due to "correlated excitations". This refers to the stimulation of particles in a material - in the same way that you might shine a light on electrons in a solar cell - affecting their behaviour to create a new state of the material where the particles strongly interact. This new state allows the energy to be controlled, converted and harnessed for a number of applications. In our example, "hot" electrons excited in a solar cell can be stabilised with the potential to increase their efficiency far beyond that of conventional systems.

Innovative, high-resolution and ultra-fast experimental methods developed by the CRC researchers are of marked significance for this research theme. "The application of these unique methods to our model systems has been a crucial contribution to the remarkable insights into the processes of energy conversion," says Jooß. In the third funding period, which starts now, the scientists want to work out a new strategy for controlling energy conversion in materials through correlated excitations in an overarching way and find out how this can be transferred to applications.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.