All people want to enact a paradigm shift, don't they? Even if it's not mRNA, or Lego, we want at least, on our one chance on Earth, to make a meme happen.
So imagine the excitement on April 7, when more than 200 physicists from seven countries convened on a Zoom call for a kind of nonexplosive gender-reveal party. What was to be disclosed was not a baby's sex but the fate of particle physics.
While the rest of the world has spent more than a year preoccupied with epidemiology, this team of physicists has spent three years collecting data for something called the Muon g-2 experiment, a much anticipated project headquartered at Fermilab, a physics and accelerator laboratory in Batavia, Illinois, that is overseen by the Department of Energy. The physicists had done their work half in the dark, with a key variable concealed. If you want a eureka badly enough, after all, you might be tempted to help the data along. Now the lights were coming on.
“We had no idea” of the outcome, Rebecca Chislett, a physicist at University College London, told Scientific American. “It was exciting and nerve-racking.”
Eureka.
The experiment had aimed to determine, to the finest measurement, the strength of the internal magnetic field generated by a muon, a particle similar to an electron but 200 times more massive and supremely unstable, with a lifetime of 2.2 microseconds. Muons rain down on us all the time, the indirect product of cosmic rays colliding with particles in Earth's atmosphere. But Fermilab's accelerator makes its own.
Many subatomic particles act like magnets, and the so-called Standard Model predicts the strength of their magnetism with great exactitude. To test the model, the team watched muons as they wobbled in a magnetic field and clocked whether the wobble deviated from what theory had predicted it would be. Indeed, it did. As Galileo might have said: Eppur si deviare.
In the journal Physical Review Letters, the researchers reported that the infinitesimal deviation—0.0000002 percent away from what theory stipulated—was highly significant. In its press release, Fermilab even suggested that the discovery could force us to revise our basic model of how subatomic particles work.
“The strong evidence that muons deviate from the Standard Model calculation might hint at exciting new physics. Muons act as a window into the subatomic world and could be interacting with yet undiscovered particles or forces,” read the press release. Graziano Venanzoni, a physicist at the Italian National Institute for Nuclear Physics in Pisa, called the findings “an incredible result … long awaited not only by us but by the whole international physics community.”