ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • First Cloudless, Jupiter-Like Planet
  • Immune System: Defense After Recovery from COVID
  • Saturn's Tilt Caused by Its Moons
  • Butterfly Wing Clap Explains Mystery of Flight
  • Much of Earth's Nitrogen Was Locally Sourced
  • A 'Super-Puff' Planet Like No Other
  • 2020 Tied for Warmest Year On Record: NASA
  • COVID-19 Reduced U.S. Life Expectancy
  • Climate Change: Billions in Flood Damages
  • Distant Colliding Galaxy Dying Out
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Venus flytraps found to produce magnetic fields

Physicists use atomic magnetometers to measure the biomagnetic signals of the carnivorous plant

Date:
February 2, 2021
Source:
Johannes Gutenberg Universitaet Mainz
Summary:
The Venus flytrap (Dionaea muscipula) is a carnivorous plant that encloses its prey using modified leaves as a trap. During this process, electrical signals known as action potentials trigger the closure of the leaf lobes. An interdisciplinary team of scientists has now shown that these electrical signals generate measurable magnetic fields.
Share:
FULL STORY

The Venus flytrap (Dionaea muscipula) is a carnivorous plant that encloses its prey using modified leaves as a trap. During this process, electrical signals known as action potentials trigger the closure of the leaf lobes. An interdisciplinary team of scientists has now shown that these electrical signals generate measurable magnetic fields. Using atomic magnetometers, it proved possible to record this biomagnetism. "You could say the investigation is a little like performing an MRI scan in humans," said physicist Anne Fabricant. "The problem is that the magnetic signals in plants are very weak, which explains why it was extremely difficult to measure them with the help of older technologies."

advertisement

Electrical activity in the Venus flytrap is associated with magnetic signals

We know that in the human brain voltage changes in certain regions result from concerted electrical activity that travels through nerve cells in the form of action potentials. Techniques such as electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance imaging (MRI) can be used to record these activities and noninvasively diagnose disorders. When plants are stimulated, they also generate electrical signals, which can travel through a cellular network analogous to the human and animal nervous system.

An interdisciplinary team of researchers from Johannes Gutenberg University Mainz (JGU), the Helmholtz Institute Mainz (HIM), the Biocenter of Julius-Maximilians-Universität of Würzburg (JMU), and the Physikalisch-Technische Bundesanstalt (PTB) in Berlin, Germany's national meteorology institute, has now demonstrated that electrical activity in the Venus flytrap is also associated with magnetic signals. "We have been able to demonstrate that action potentials in a multicellular plant system produce measurable magnetic fields, something that had never been confirmed before," said Anne Fabricant, a doctoral candidate in Professor Dmitry Budker's research group at JGU and HIM.

The trap of Dionaea muscipula consists of bilobed trapping leaves with sensitive hairs, which, when touched, trigger an action potential that travels through the whole trap. After two successive stimuli, the trap closes and any potential insect prey is locked inside and subsequently digested. Interestingly, the trap is electrically excitable in a variety of ways: in addition to mechanical influences such as touch or injury, osmotic energy, for example salt-water loads, and thermal energy in the form of heat or cold can also trigger action potentials. For their study, the research team used heat stimulation to induce action potentials, thereby eliminating potentially disturbing factors such as mechanical background noise in their magnetic measurements.

Biomagnetism -- detection of magnetic signals from living organisms

While biomagnetism has been relatively well-researched in humans and animals, so far very little equivalent research has been done in the plant kingdom, using only superconducting-quantum-interference-device (SQUID) magnetometers, bulky instruments which must be cooled to cryogenic temperatures. For the current experiment, the research team used atomic magnetometers to measure the magnetic signals of the Venus flytrap. The sensor is a glass cell filled with a vapor of alkali atoms, which react to small changes in the local magnetic-field environment. These optically pumped magnetometers are more attractive for biological applications because they do not require cryogenic cooling and can also be miniaturized.

The researchers detected magnetic signals with an amplitude of up to 0.5 picotesla from the Venus flytrap, which is millions of times weaker than the Earth's magnetic field. "The signal magnitude recorded is similar to what is observed during surface measurements of nerve impulses in animals," explained Anne Fabricant. The JGU physicists aim to measure even smaller signals from other plant species. In the future, such noninvasive technologies could potentially be used in agriculture for crop-plant diagnostics, by detecting electromagnetic responses to sudden temperature changes, pests, or chemical influences without having to damage the plants using electrodes.

make a difference: sponsored opportunity

Story Source:

Materials provided by Johannes Gutenberg Universitaet Mainz. Note: Content may be edited for style and length.


Journal Reference:

  1. Anne Fabricant, Geoffrey Z. Iwata, Sönke Scherzer, Lykourgos Bougas, Katharina Rolfs, Anna Jodko-Władzińska, Jens Voigt, Rainer Hedrich, Dmitry Budker. Action potentials induce biomagnetic fields in carnivorous Venus flytrap plants. Scientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-81114-w

Cite This Page:

  • MLA
  • APA
  • Chicago
Johannes Gutenberg Universitaet Mainz. "Venus flytraps found to produce magnetic fields: Physicists use atomic magnetometers to measure the biomagnetic signals of the carnivorous plant." ScienceDaily. ScienceDaily, 2 February 2021. <www.sciencedaily.com/releases/2021/02/210202113815.htm>.
Johannes Gutenberg Universitaet Mainz. (2021, February 2). Venus flytraps found to produce magnetic fields: Physicists use atomic magnetometers to measure the biomagnetic signals of the carnivorous plant. ScienceDaily. Retrieved February 2, 2021 from www.sciencedaily.com/releases/2021/02/210202113815.htm
Johannes Gutenberg Universitaet Mainz. "Venus flytraps found to produce magnetic fields: Physicists use atomic magnetometers to measure the biomagnetic signals of the carnivorous plant." ScienceDaily. www.sciencedaily.com/releases/2021/02/210202113815.htm (accessed February 2, 2021).

  • RELATED TOPICS
    • Plants & Animals
      • Endangered Plants
      • Botany
      • Agriculture and Food
      • Nature
      • Epigenetics Research
      • Life Sciences
      • Biology
      • Developmental Biology
advertisement

  • RELATED TERMS
    • Action potential
    • Pitcher plant
    • Neuron
    • Leaf vegetable
    • Leaf
    • Neurotransmitter
    • Retina
    • Tea

1

2

3

4

5
RELATED STORIES

How Venus Flytraps Snap
July 10, 2020 — Venus flytraps catch spiders and insects by snapping their trap leaves. This mechanism is activated when unsuspecting prey touch highly sensitive trigger hairs twice within 30 seconds. A study has ...
Venus Flytrap Snapping Mechanisms Virtually Captured
June 23, 2020 — The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have closed, insects can no longer escape. Using ...
The Carnivorous Plant Lifestyle Is Gene Costly
May 14, 2020 — The genomes of three carnivorous plants -- the Venus flytrap, spoon-leaved sundew and the waterwheel plant -- have been decoded. The result has caused some ...
Scientists Show How the Venus Flytrap Uses Its Prey's Nitrogen Compounds to Extract Energy
Jan. 20, 2017 — The Venus flytrap captures insects for more than just nutritional purposes. A research team has demonstrated that the carnivorous plant extracts also energy from its ...
FROM AROUND THE WEB

ScienceDaily shares links with sites in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

PLANTS & ANIMALS
Butterfly Wing Clap Explains Mystery of Flight
Diet Modifications -- Including More Wine and Cheese -- May Help Reduce Cognitive Decline, Study Suggests
Vegan Diet Significantly Remodels Metabolism in Young Children
EARTH & CLIMATE
Much of Earth's Nitrogen Was Locally Sourced
2020 Tied for Warmest Year on Record, NASA Analysis Shows
Geological Phenomenon Widening the Atlantic Ocean
FOSSILS & RUINS
Boy or Girl? It's in the Father's Genes
Blue-Eyed Humans Have a Single, Common Ancestor
Why Crocodiles Have Changed So Little Since the Age of the Dinosaurs
advertisement

Strange & Offbeat
 

PLANTS & ANIMALS
Lactobacillus Manipulates Bile Acids to Create Favorable Gut Environment
Wonder Fungi in Goat's Gut
When Rhinos Fly: Upside Down the Right Way for Transport
EARTH & CLIMATE
Using Science to Explore a 60-Year-Old Russian Mystery
Giant Sand Worm Discovery Proves Truth Is Stranger Than Fiction
Butterfly Wing Clap Explains Mystery of Flight
FOSSILS & RUINS
New Light Shed on Behavior of Giant Carnivorous Dinosaur Spinosaurus
New Skull of Tube-Crested Dinosaur Reveals Evolution of Bizarre Crest
Spitting Cobra Venom Reveals How Evolution Often Finds the Same Answer to a Common Problem
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2021 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —