ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • Search for Dark Matter from the Multiverse
  • Life On Earth Could Have Arisen from RNA-DNA Mix
  • New Class of Antibiotics Work On Many Bacteria
  • How Our Brains Track Where We and Others Go
  • Mini Antibodies Against COVID-19 from a Llama
  • The Aroma of Distant Worlds
  • The Upside of Volatile Space Weather
  • Climate Change: Threshold for Dangerous Warming
  • Volcanoes Triggered Ocean Acidification
  • Unknown Asteroid Likely the Size of Ceres
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Magnets dim natural glow of human cells, may shed light on how animals migrate

First direct observation of magnetic field affecting autofluorescence of flavins in living cells

Date:
January 5, 2021
Source:
University of Tokyo
Summary:
New research shows how X-Men villain Magneto's super powers could really work. Researchers have made the first observations of biological magnetoreception - live, unaltered cells responding to a magnetic field in real time. This discovery is a crucial step in understanding how animals from birds to butterflies navigate using Earth's magnetic field and addressing the question of whether weak electromagnetic fields in our environment might affect human health.
Share:
FULL STORY

Researchers in Japan have made the first observations of biological magnetoreception -- live, unaltered cells responding to a magnetic field in real time. This discovery is a crucial step in understanding how animals from birds to butterflies navigate using Earth's magnetic field and addressing the question of whether weak electromagnetic fields in our environment might affect human health.

advertisement

"The joyous thing about this research is to see that the relationship between the spins of two individual electrons can have a major effect on biology," said Professor Jonathan Woodward from the University of Tokyo, who conducted the research with doctoral student Noboru Ikeya. The results were recently published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Researchers have suspected since the 1970s that because magnets can attract and repel electrons, Earth's magnetic field, also called the geomagnetic field, could influence animal behavior by affecting chemical reactions. When some molecules are excited by light, an electron can jump from one molecule to another and create two molecules with single electrons, known as a radical pair. The single electrons can exist in one of two different spin states. If the two radicals have the same electron spin, their subsequent chemical reactions are slow, while radical pairs with opposite electron spins can react faster. Magnetic fields can influence electron spin states and thus directly influence chemical reactions involving radical pairs.

Over the past 50 years, chemists have identified multiple reactions and specific proteins called cryptochromes that are sensitive to magnetic fields in test tube environments. Biologists have even observed how genetically interfering with cryptochromes in fruit flies and cockroaches can eliminate the insects' ability to navigate according to geomagnetic cues. Other research has indicated that birds' and other animals' geomagnetic navigation is light sensitive. However, no one has previously measured chemical reactions inside a living cell changing directly because of a magnetic field.

Woodward and Ikeya worked with HeLa cells, human cervical cancer cells that are commonly used in research labs, and were specifically interested in their flavin molecules.

Flavins are a subunit of cryptochromes that are themselves a common and well-studied group of molecules that naturally glow, or fluoresce, when exposed to blue light. They are important light-sensing molecules in biology.

advertisement

When flavins are excited by light, they can either fluoresce or produce radical pairs. This competition means that the amount of flavin fluorescence depends on how quickly the radical pairs react. The University of Tokyo team hoped to observe biological magnetoreception by monitoring cells' autofluorescence while adding an artificial magnetic field to their environment.

Autofluorescence is common in cells, so to isolate flavin autofluorescence, the researchers used lasers to shine light of a specific wavelength onto the cells and then measured the wavelengths of the light that the cells emitted back to ensure that it matched the characteristic values of flavin autofluorescence. Standard magnetic equipment can generate heat, so the researchers took extensive precautions and performed exhaustive control measurements to verify that the only change in the cells' environment was the presence or absence of the magnetic field.

"My goal even as a Ph.D. student has always been to directly see these radical pair effects in a real biological system. I think that is what we've just managed," said Woodward.

The cells were irradiated with blue light and fluoresced for about 40 seconds. Researchers swept a magnetic field over the cells every four seconds and measured changes in the intensity of the fluorescence. Statistical analysis of the visual data from the experiments revealed that the cell's fluorescence dimmed by about 3.5% each time the magnetic field swept over the cells.

The researchers suspect that the blue light excites the flavin molecules to generate radical pairs. The presence of a magnetic field caused more radical pairs to have the same electron spin states, meaning that there were fewer flavin molecules available to emit light. Thus, the cell's flavin fluorescence dimmed until the magnetic field went away.

advertisement

"We've not modified or added anything to these cells. We think we have extremely strong evidence that we've observed a purely quantum mechanical process affecting chemical activity at the cellular level," Woodward remarked.

Lab experiments and real-world magnetoreception

The experimental magnetic fields were 25 millitesla, which is roughly equivalent to common refrigerator magnets. The magnetic field of the Earth varies by location, but is estimated to be about 50 microtesla, or 500 times weaker than the magnetic fields used in the experiments.

Woodward states that Earth's very weak magnetic field could still have a biologically important influence due to a phenomenon known as the low field effect. Although strong magnetic fields make it difficult for radical pairs to switch between states in which the two electron spins are the same and states in which they are different, weak magnetic fields can have the opposite effect and make the switch easier than when there is no magnetic field.

The authors are now investigating the effect in other types of cells, the potential role of the cells' health and surroundings, and testing candidate magnetic receptors, including cryptochromes directly inside cells. Interpreting any potential environmental or physiological significance of the results will require developing more specialized and highly sensitive equipment to work with much weaker magnetic fields and more detailed cellular analysis to connect the magnetic field-sensitive response to specific signaling pathways or other consequences within the cell.

make a difference: sponsored opportunity

Story Source:

Materials provided by University of Tokyo. Note: Content may be edited for style and length.


Journal Reference:

  1. Noboru Ikeya, Jonathan R. Woodward. Cellular autofluorescence is magnetic field sensitive. Proceedings of the National Academy of Sciences, 2021; 118 (3): e2018043118 DOI: 10.1073/pnas.2018043118

Cite This Page:

  • MLA
  • APA
  • Chicago
University of Tokyo. "Magnets dim natural glow of human cells, may shed light on how animals migrate: First direct observation of magnetic field affecting autofluorescence of flavins in living cells." ScienceDaily. ScienceDaily, 5 January 2021. <www.sciencedaily.com/releases/2021/01/210105104832.htm>.
University of Tokyo. (2021, January 5). Magnets dim natural glow of human cells, may shed light on how animals migrate: First direct observation of magnetic field affecting autofluorescence of flavins in living cells. ScienceDaily. Retrieved January 6, 2021 from www.sciencedaily.com/releases/2021/01/210105104832.htm
University of Tokyo. "Magnets dim natural glow of human cells, may shed light on how animals migrate: First direct observation of magnetic field affecting autofluorescence of flavins in living cells." ScienceDaily. www.sciencedaily.com/releases/2021/01/210105104832.htm (accessed January 6, 2021).

  • RELATED TOPICS
    • Plants & Animals
      • Biology
      • Genetics
      • Biotechnology and Bioengineering
      • Biotechnology
    • Earth & Climate
      • Atmosphere
      • Geomagnetic Storms
      • Environmental Issues
      • Geochemistry
advertisement

  • RELATED TERMS
    • Geophysics
    • Radiant energy
    • Sea turtle
    • Origin of life
    • Molecular biology
    • Human biology
    • Weather forecasting
    • Civil engineering

1

2

3

4

5
RELATED STORIES

Macroscopic Phenomena Governed by Microscopic Physics
Dec. 3, 2018 — Researchers have observed a magnetic reconnection driven by electron dynamics in laser-produced plasmas. Magnetic reconnections are often observed in the magnetic flux on the Sun and the Earth's ...
How Birds Can Detect Earth's Magnetic Field
Apr. 6, 2018 — Researchers have made a key discovery about the internal magnetic compass of birds. Biologists have identified a single protein without which birds probably would not be able to orient themselves ...
Computational Study Sheds Doubt on Latest Theory of Birds' Mysterious Magnetic Compass
Oct. 3, 2017 — The European robin and other birds know where to migrate by sensing the direction of the Earth's magnetic field. Researchers have recently attributed this ability to a chemical reaction that takes ...
What Did Earth's Ancient Magnetic Field Look Like?
June 24, 2016 — Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two, new research suggests. Then, shortly after our ...
FROM AROUND THE WEB

ScienceDaily shares links with sites in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

PLANTS & ANIMALS
(c) (c) k_e_n / AdobeNew Class of Antibiotics Active Against a Wide Range of Bacteria
(c) (c) BillionPhotos.com / AdobeDiscovery Boosts Theory That Life on Earth Arose from RNA-DNA Mix
(c) (c) ginton / AdobeNeuroscientists Isolate Promising Mini Antibodies Against COVID-19 from a Llama
EARTH & CLIMATE
Desalination Breakthrough Could Lead to Cheaper Water Filtration
100-Year-Old Mystery Solved: Adult Eel Observed for the First Time in the Sargasso Sea
(c) (c) denyasapozhnik / AdobeClimate Change: Threshold for Dangerous Warming Will Likely Be Crossed Between 2027-2042
FOSSILS & RUINS
Boy or Girl? It's in the Father's Genes
Blue-Eyed Humans Have a Single, Common Ancestor
(c) (c) Karnav / AdobeThe Aroma of Distant Worlds
advertisement

Strange & Offbeat
 

PLANTS & ANIMALS
How Earth's Oddest Mammal Got to Be So Bizarre
Guinea Baboons Grunt With an Accent
Competitive Athletics: Detecting CRISPR/Cas Gene Doping
EARTH & CLIMATE
Rare Footage Captured of Jaguar Killing Ocelot at Waterhole
A Robotic Revolution for Urban Nature
(c) (c) Peter Jurik / AdobeThe Upside of Volatile Space Weather
FOSSILS & RUINS
Early Mammal With Remarkably Precise Bite
Ancient Wolf Pup Mummy in Yukon Permafrost from 57,000 Years Ago
Crikey! Massive Prehistoric Croc Emerges from South East Queensland
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2021 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —