ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • Key Clues About the Solar System's History
  • Revealing Hidden Kilauea Volcano Behavior
  • What Social Distancing Does to a Fish Brain
  • New Physics and the Early Universe
  • How SARS-CoV-2 Rapidly Damages Human Lung Cells
  • Greenland Ice Sheet Faces Irreversible Melting
  • Early Changes in Alzheimer’s Before Symptoms
  • Fingerprints Strengthen Human Touch
  • Is It Better to Give Than Receive?
  • New Hubble Data Explains Missing Dark Matter
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Battery of tests: Scientists figure out how to track what happens inside batteries

Date:
December 4, 2020
Source:
DOE/Argonne National Laboratory
Summary:
A new method could be the key to designing more efficient batteries for specific uses, like electric cars and airplanes.
Share:
FULL STORY

The future of mobility is electric cars, trucks and airplanes. But there is no way a single battery design can power that future. Even your cell phone and laptop batteries have different requirements and different designs. The batteries we will need over the next few decades will have to be tailored to their specific uses.

advertisement

And that means understanding exactly what happens, as precisely as possible, inside each type of battery. Every battery works on the same principle: ions, which are atoms or molecules with an electrical charge, carry a current from the anode to the cathode through material called the electrolyte, and then back again. But their precise movement through that material, whether liquid or solid, has puzzled scientists for decades. Knowing exactly how different types of ions move through different types of electrolytes will help researchers figure out how to affect that movement, to create batteries that charge and discharge in ways most befitting their specific uses.

In a breakthrough discovery, a team of scientists has demonstrated a combination of techniques that allows for the precise measurement of ions moving through a battery. Using the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Argonne National Laboratory, these researchers have not only peered inside a battery as it operates, measuring the reactions in real time, but have opened the door to similar experiments with different types of batteries.

The researchers collaborated on this result with the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne. The team's paper, which details velocities of lithium ions moving through a polymer electrolyte, was published in Energy and Environmental Science.

"This is a combination of different experimental methods to measure velocity and concentration, and then compare them both to theory," said Hans-Georg Steinrück, professor at Paderborn University in Germany and the first author on the paper. "We showed this is possible, and now we will perform it on other systems that are different in nature."

Those methods, performed at beamline 8-ID-I at the APS, included using ultra-bright X-rays to measure the velocity of the ions moving through the battery, and to simultaneously measure the concentration of ions within the electrolyte, while a model battery discharged. The research team then compared their results with mathematical models. Their result is an extremely accurate figure representing the current carried by ions -- what is called the transport number.

advertisement

The transport number is essentially the amount of current carried by positively charged ions in relation to the overall electric current, and the team's calculations put that number at approximately 0.2. This conclusion differs from those derived by other methods, researchers said, due to the sensitivity of this new way of measuring ion movement.

The true value transport number has been the subject of some debate among scientists for years, according to Michael Toney, professor at the University of Colorado Boulder and an author on the paper. Toney and Steinrück were both staff scientists at the DOE's SLAC National Accelerator Laboratory when this research was conducted.

"The traditional way of measuring the transport number is to analyze the current," Toney said. "But it was unknown how much of that current is due to lithium ions and how much is due to other things you don't want in your analysis. The principle is easy, but we had to measure accurately. This was certainly a proof of concept."

For this experiment the research team used a solid polymer electrolyte, instead of the liquid ones in wide use for lithium ion batteries. As Toney notes, polymers are safer, since they avoid the flammability issues of some liquid electrolytes.

Argonne's Venkat Srinivasan, deputy director of JCESR and an author on the paper, has extensive experience modeling the reactions inside batteries, but this is the first time he's been able to compare those models to real-time data on the movement of ions through an electrolyte.

advertisement

"For years we wrote papers about what happens inside a battery, since we couldn't see the things inside," he said. "I always joked that whatever I said must be true, since we couldn't confirm it. So for decades we have been looking for information like this, and it challenges people like me who have been making the predictions."

In the past, Srinivasan said, the best way to research the inner workings of batteries was to send a current through them and then analyze what happened afterward. The ability to trace the ions moving in real time, he said, offers scientists a chance to change that movement to suit their battery design needs.

"We had to connect the dots before, and now we can directly detect the ions," he said. "There is no ambiguity."

Eric Dufresne, physicist with Argonne's X-ray Science Division, was one of the APS scientists who worked on this project. An author on the paper, Dufresne said the experiment made use of the coherence available at the APS, allowing the research team to capture the effect they were looking for down to velocities of only nanometers per second.

"This is a very thorough and complex study," he said. "It's a nice example of combining X-ray techniques in a novel way, and a good step toward developing future applications."

Dufresne and his colleagues also noted that these experiments will only improve once the APS undergoes an in-progress upgrade of its electron storage ring, which will increase the brightness of the X-rays it produces by up to 500 times.

"The APS Upgrade will allow us to push these dynamic studies to better than microseconds," Dufresne said. "We will be able to focus the beam for smaller measurements and get through thicker materials. The upgrade will give us unique capabilities, and we will be able to do more experiments of this type."

That's a prospect that excites the research team. Steinrück said the next step is to analyze more complex polymers and other materials, and eventually into liquid electrolytes. Toney said he would like to examine ions from other types of material, like calcium and zinc.

Examining a diversity of materials, Srinivasan said, would be important for the eventual goal: batteries that are precisely designed for their individual uses.

"If we want to create high-energy, fast, safe, long-lasting batteries, we need to know more about ion motion," he said. "We need to understand more about what happens inside a battery, and use that knowledge to design new materials from the bottom up."

This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy Office of Science, Basic Energy Sciences.

make a difference: sponsored opportunity

Story Source:

Materials provided by DOE/Argonne National Laboratory. Original written by Andre Salles. Note: Content may be edited for style and length.


Journal Reference:

  1. Hans-Georg Steinrück, Christopher J. Takacs, Hong-Keun Kim, David G. Mackanic, Benjamin Holladay, Chuntian Cao, Suresh Narayanan, Eric M. Dufresne, Yuriy Chushkin, Beatrice Ruta, Federico Zontone, Johannes Will, Oleg Borodin, Sunil K. Sinha, Venkat Srinivasan, Michael F. Toney. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy & Environmental Science, 2020; 13 (11): 4312 DOI: 10.1039/D0EE02193H

Cite This Page:

  • MLA
  • APA
  • Chicago
DOE/Argonne National Laboratory. "Battery of tests: Scientists figure out how to track what happens inside batteries." ScienceDaily. ScienceDaily, 4 December 2020. <www.sciencedaily.com/releases/2020/12/201204110227.htm>.
DOE/Argonne National Laboratory. (2020, December 4). Battery of tests: Scientists figure out how to track what happens inside batteries. ScienceDaily. Retrieved December 6, 2020 from www.sciencedaily.com/releases/2020/12/201204110227.htm
DOE/Argonne National Laboratory. "Battery of tests: Scientists figure out how to track what happens inside batteries." ScienceDaily. www.sciencedaily.com/releases/2020/12/201204110227.htm (accessed December 6, 2020).

  • RELATED TOPICS
    • Matter & Energy
      • Batteries
      • Energy Technology
      • Physics
      • Energy and Resources
      • Fuel Cells
      • Materials Science
      • Civil Engineering
      • Graphene
advertisement

  • RELATED TERMS
    • Alternative fuel vehicle
    • Electricity
    • Battery electric vehicle
    • Three-phase electric power
    • Electric power
    • Microwave
    • Engineering
    • Electrical conduction

1

2

3

4

5
RELATED STORIES

New Insights Into Lithium-Ion Battery Failure Mechanism
Aug. 25, 2020 — Researchers have identified a potential new degradation mechanism for electric vehicle batteries - a key step to designing effective methods to improve battery ...
Paper-Thin Gallium Oxide Transistor Handles More Than 8,000 Volts
May 29, 2020 — Electrical engineers created a gallium oxide-based transistor that can handle more than 8,000 volts. The transistor could lead to smaller and more efficient electronic systems that control and ...
Putting Hybrid-Electric Aircraft Performance to the Test
Nov. 27, 2018 — Although hybrid-electric cars are becoming commonplace, similar technology applied to airplanes comes with significantly different challenges. Aerospace engineers are addressing some of them toward ...
Novel Synthesis Method Opens Up New Possibilities for Utilizing Li-Ion Batteries
Feb. 17, 2016 — Lithium-ion batteries are a rapidly growing energy storage method due to their high energy density, especially in mobile applications such as personal electronics and electric cars. However, the ...
FROM AROUND THE WEB

ScienceDaily shares links with sites in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

SPACE & TIME
New Hubble Data Explains Missing Dark Matter
Voyager Spacecraft Detect New Type of Solar Electron Burst
A Hint of New Physics in Polarized Radiation from the Early Universe
MATTER & ENERGY
Two Distinctly Different Liquid States of Water
A Biochemical Random Number
New CRISPR-Based Test for COVID-19 Uses a Smartphone Camera
COMPUTERS & MATH
Three Reasons Why COVID-19 Can Cause Silent Hypoxia
Video Games Can Change Your Brain
New Study Estimates the Odds of Life and Intelligence Emerging Beyond Our Planet
advertisement

Strange & Offbeat
 

SPACE & TIME
Supercomputer Simulations Could Unlock Mystery of Moon's Formation
Physicists Capture the Sound of a Perfect Fluid
Astronomers to Release Most Accurate Data Ever for Nearly Two Billion Stars
MATTER & ENERGY
Dark Excitons Hit the Spotlight
A Hint of New Physics in Polarized Radiation from the Early Universe
Oddly Satisfying Metamaterials Store Energy in Their Skin
COMPUTERS & MATH
Tech Makes It Possible to Digitally Communicate Through Human Touch
Chaotic Early Solar System Collisions Resembled 'Asteroids' Arcade Game
Next Step in Simulating the Universe
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2020 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —