CCI Online Learning
50% OFF in CA/CS/CMA Subjects
     
CIBIL

Upgrad

Share on Facebook

Share on Twitter

Share on LinkedIn

Share on Email

Share More

Optimal Pricing solutions through Linear Programming


yasaswi gomes   24 November 2020

yasaswi gomes

 113 likes  1962 points

| My Other Post

n=9 Forecasted sales demand (X) Actual sales demand Total Fixed costs Total Variable costs Total unit Price      (Y) XY X² Y²
2010 100 110 100 50 1.36 136.36 10000 1.86
2011 120 115 100 50 1.30 156.52 14400 1.70
2012 90 100 100 50 1.50 135.00 8100 2.25
2013 110 130 100 50 1.15 126.92 12100 1.33
2014 140 150 100 50 1.00 140.00 19600 1.00
2015 120 120 100 50 1.25 150.00 14400 1.56
2016 120 100 100 50 1.50 180.00 14400 2.25
2017 150 170 100 50 0.88 132.35 22500 0.78
2018 140 150 100 50 1.00 140.00 19600 1.00
2019 130 150 100 50 1.00 130.00 16900 1.00
Total 1220 1295 1000 500 11.95418 1427.161 152000

14.73323504

 

Workings:                        
X=  Σ X/n= 1295/9= 143.8889                  
Y= Σ Y/n= 11.95418/9= 1.328243                  
                         
Least Squares Method              
Constant b   Σ XY - n(X)(Y)= -292.913 = 0.008531              
    (Σ X²)-n(X)² -34336.1                  
Constant a=   Y-bX= 30919.32- (311.2415 * 135.5556)            
    = 0.100763                  
                         
Y= a + bX = 50 Price/Unit                
                         
Optimal Pricing of Products            
0.100763 - 0.008531 (X) = 50                  
0.008531 (X)   =   50+(0.100763)                
X (Demand in units) = 5873                  
Y (Price/Unit) = 50                  
Units to be produced = 5873                  
Price per unit = 50                  
Profits are maximised when Marginal Revenue= Marginal Cost (Variable Cost)            
                         
Total Revenue=     294832                  
Total Costs= Fixed cost+ (X*Variable cost) 294648                  
Profit     184                  
Extrapolated results for Linear Equations:                    
                         
Y= a + bX This Demand Curve linear equation directly calculates the optimal selling price when Units to be produced are given to maximise revenues
Y= a - bX This Demand Curve linear equation maximises profits when the equation is simplified for MR=MC      

Download Excel for free - Note: Break even is not possible with any inputs available.


Attached File : 2750458 20201124202316 demand forecasting.xlsx



Leave a reply

Your are not logged in . Please login to post replies

Click here to Login / Register  


Bajaj Finserv


Trending Tags
GST Live Class    |    x