yasaswi gomes 24 November 2020
n=9 | Forecasted sales demand (X) | Actual sales demand | Total Fixed costs | Total Variable costs | Total unit Price (Y) | XY | X² | Y² |
2010 | 100 | 110 | 100 | 50 | 1.36 | 136.36 | 10000 | 1.86 |
2011 | 120 | 115 | 100 | 50 | 1.30 | 156.52 | 14400 | 1.70 |
2012 | 90 | 100 | 100 | 50 | 1.50 | 135.00 | 8100 | 2.25 |
2013 | 110 | 130 | 100 | 50 | 1.15 | 126.92 | 12100 | 1.33 |
2014 | 140 | 150 | 100 | 50 | 1.00 | 140.00 | 19600 | 1.00 |
2015 | 120 | 120 | 100 | 50 | 1.25 | 150.00 | 14400 | 1.56 |
2016 | 120 | 100 | 100 | 50 | 1.50 | 180.00 | 14400 | 2.25 |
2017 | 150 | 170 | 100 | 50 | 0.88 | 132.35 | 22500 | 0.78 |
2018 | 140 | 150 | 100 | 50 | 1.00 | 140.00 | 19600 | 1.00 |
2019 | 130 | 150 | 100 | 50 | 1.00 | 130.00 | 16900 | 1.00 |
Total | 1220 | 1295 | 1000 | 500 | 11.95418 | 1427.161 | 152000 |
14.73323504 |
Workings: | ||||||||||||
X= | Σ X/n= | 1295/9= | 143.8889 | |||||||||
Y= | Σ Y/n= | 11.95418/9= | 1.328243 | |||||||||
Least Squares Method | ||||||||||||
Constant b= | Σ XY - n(X)(Y)= | -292.913 | = | 0.008531 | ||||||||
(Σ X²)-n(X)² | -34336.1 | |||||||||||
Constant a= | Y-bX= | 30919.32- (311.2415 * 135.5556) | ||||||||||
= | 0.100763 | |||||||||||
Y= a + bX | = | 50 | Price/Unit | |||||||||
Optimal Pricing of Products | ||||||||||||
0.100763 - 0.008531 (X) | = | 50 | ||||||||||
0.008531 (X) | = | 50+(0.100763) | ||||||||||
X (Demand in units) | = | 5873 | ||||||||||
Y (Price/Unit) | = | 50 | ||||||||||
Units to be produced | = | 5873 | ||||||||||
Price per unit | = | 50 | ||||||||||
Profits are maximised when Marginal Revenue= Marginal Cost (Variable Cost) | ||||||||||||
Total Revenue= | 294832 | |||||||||||
Total Costs= Fixed cost+ (X*Variable cost) | 294648 | |||||||||||
Profit | 184 | |||||||||||
Extrapolated results for Linear Equations: | ||||||||||||
Y= a + bX | This Demand Curve linear equation directly calculates the optimal selling price when Units to be produced are given to maximise revenues | |||||||||||
Y= a - bX | This Demand Curve linear equation maximises profits when the equation is simplified for MR=MC |
Download Excel for free - Note: Break even is not possible with any inputs available.
Stay updated with latest Discussion!