ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • Optical Illusions Explained in a Fly's Eyes
  • Animal Species May Be Vulnerable to SARS-CoV-2
  • Exploding Stars May Have Caused Mass Extinction
  • Slowly Splitting 'Dent' in Earth's Magnetic ...
  • Gut Bacteria Can Enhance Immunotherapy
  • Why Seasonal Flu Shots Don't 'Stick' Long-Term
  • Loss of Enzyme Boosts Fat Metabolism in Mice
  • Smiling Really Does Give You a Positive Outlook
  • Greenland Ice Sheet Passes Point of No Return
  • Woolly Rhinos Went Extinct Due to Climate Change
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Cutting surgical robots down to size

Origami-inspired miniature manipulator improves precision and control of teleoperated surgical procedures

Date:
August 25, 2020
Source:
Wyss Institute for Biologically Inspired Engineering at Harvard
Summary:
Teleoperated surgical robots are becoming commonplace in operating rooms, but many are massive (sometimes taking up an entire room) and difficult to manipulate. Medical researchers and engineers have now created the mini-RCM, a surgical robot the size of a tennis ball that weighs as much as a penny, and performed significantly better than manually operated tools in delicate mock-surgical procedures.
Share:
FULL STORY

Teleoperated surgical robots are becoming commonplace in operating rooms, but many are massive (sometimes taking up an entire room) and difficult to manipulate. A new collaboration between Harvard's Wyss Institute and Sony Corporation has created the mini-RCM, a surgical robot the size of a tennis ball that weighs as much as a penny, and performed significantly better than manually operated tools in delicate mock-surgical procedures.

advertisement

Minimally invasive laparoscopic surgery, in which a surgeon uses tools and a tiny camera inserted into small incisions to perform operations, has made surgical procedures safer for both patients and doctors over the last half-century. Recently, surgical robots have started to appear in operating rooms to further assist surgeons by allowing them to manipulate multiple tools at once with greater precision, flexibility, and control than is possible with traditional techniques. However, these robotic systems are extremely large, often taking up an entire room, and their tools can be much larger than the delicate tissues and structures on which they operate.

A collaboration between Wyss Associate Faculty member Robert Wood, Ph.D. and Robotics Engineer Hiroyuki Suzuki of Sony Corporation has brought surgical robotics down to the microscale by creating a new, origami-inspired miniature remote center of motion manipulator (the "mini-RCM"). The robot is the size of a tennis ball, weighs about as much as a penny, and successfully performed a difficult mock surgical task, as described in a recent issue of Nature Machine Intelligence.

"The Wood lab's unique technical capabilities for making micro-robots have led to a number of impressive inventions over the last few years, and I was convinced that it also had the potential to make a breakthrough in the field of medical manipulators as well," said Suzuki, who began working with Wood on the mini-RCM in 2018 as part of a Harvard-Sony collaboration. "This project has been a great success."

A mini robot for micro tasks

To create their miniature surgical robot, Suzuki and Wood turned to the Pop-Up MEMS manufacturing technique developed in Wood's lab, in which materials are deposited on top of each other in layers that are bonded together, then laser-cut in a specific pattern that allows the desired three-dimensional shape to "pop up," as in a children's pop-up picture book. This technique greatly simplifies the mass-production of small, complex structures that would otherwise have to be painstakingly constructed by hand.

advertisement

The team created a parallelogram shape to serve as the main structure of the robot, then fabricated three linear actuators (mini-LAs) to control the robot's movement: one parallel to the bottom of the parallelogram that raises and lowers it, one perpendicular to the parallelogram that rotates it, and one at the tip of the parallelogram that extends and retracts the tool in use. The result was a robot that is much smaller and lighter than other microsurgical devices previously developed in academia.

The mini-LAs are themselves marvels in miniature, built around a piezoelectric ceramic material that changes shape when an electrical field is applied. The shape change pushes the mini-LA's "runner unit" along its "rail unit" like a train on train tracks, and that linear motion is harnessed to move the robot. Because piezoelectric materials inherently deform as they change shape, the team also integrated LED-based optical sensors into the mini-LA to detect and correct any deviations from the desired movement, such as those caused by hand tremors.

Steadier than a surgeon's hands

To mimic the conditions of a teleoperated surgery, the team connected the mini-RCM to a Phantom Omni device, which manipulated the mini-RCM in response to the movements of a user's hand controlling a pen-like tool. Their first test evaluated a human's ability to trace a tiny square smaller than the tip of a ballpoint pen, looking through a microscope and either tracing it by hand, or tracing it using the mini-RCM. The mini-RCM tests dramatically improved user accuracy, reducing error by 68% compared to manual operation -- an especially important quality given the precision required to repair small and delicate structures in the human body.

Given the mini-RCM's success on the tracing test, the researchers then created a mock version of a surgical procedure called retinal vein cannulation, in which a surgeon must carefully insert a needle through the eye to inject therapeutics into the tiny veins at the back of the eyeball. They fabricated a silicone tube the same size as the retinal vein (about twice the thickness of a human hair), and successfully punctured it with a needle attached to the end of the mini-RCM without causing local damage or disruption.

In addition to its efficacy in performing delicate surgical maneuvers, the mini-RCM's small size provides another important benefit: it is easy to set up and install and, in the case of a complication or electrical outage, the robot can be easily removed from a patient's body by hand.

"The Pop-Up MEMS method is proving to be a valuable approach in a number of areas that require small yet sophisticated machines, and it was very satisfying to know that it has the potential to improve the safety and efficiency of surgeries to make them even less invasive for patients," said Wood, who is also the Charles River Professor of Engineering and Applied Sciences at Harvard's John A. Paulson School of Engineering and Applied Sciences (SEAS).

The researchers aim to increase the force of the robot's actuators to cover the maximum forces experienced during an operation, and improve its positioning precision. They are also investigating using a laser with a shorter pulse during the machining process, to improve the mini-LAs' sensing resolution.

"This unique collaboration between the Wood lab and Sony illustrates the benefits that can arise from combining the real-world focus of industry with the innovative spirit of academia, and we look forward to seeing the impact this work will have on surgical robotics in the near future," said Wyss Institute Founding Director Don Ingber, M.D., Ph.D., who is also the the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at SEAS.

make a difference: sponsored opportunity

Story Source:

Materials provided by Wyss Institute for Biologically Inspired Engineering at Harvard. Original written by Lindsay Brownell. Note: Content may be edited for style and length.


Journal Reference:

  1. Hiroyuki Suzuki, Robert J. Wood. Origami-inspired miniature manipulator for teleoperated microsurgery. Nature Machine Intelligence, 2020; 2 (8): 437 DOI: 10.1038/s42256-020-0203-4

Cite This Page:

  • MLA
  • APA
  • Chicago
Wyss Institute for Biologically Inspired Engineering at Harvard. "Cutting surgical robots down to size: Origami-inspired miniature manipulator improves precision and control of teleoperated surgical procedures." ScienceDaily. ScienceDaily, 25 August 2020. <www.sciencedaily.com/releases/2020/08/200825110543.htm>.
Wyss Institute for Biologically Inspired Engineering at Harvard. (2020, August 25). Cutting surgical robots down to size: Origami-inspired miniature manipulator improves precision and control of teleoperated surgical procedures. ScienceDaily. Retrieved August 25, 2020 from www.sciencedaily.com/releases/2020/08/200825110543.htm
Wyss Institute for Biologically Inspired Engineering at Harvard. "Cutting surgical robots down to size: Origami-inspired miniature manipulator improves precision and control of teleoperated surgical procedures." ScienceDaily. www.sciencedaily.com/releases/2020/08/200825110543.htm (accessed August 25, 2020).

  • RELATED TOPICS
    • Health & Medicine
      • Medical Devices
      • Medical Education and Training
      • Today's Healthcare
    • Matter & Energy
      • Robotics Research
      • Engineering
      • Vehicles
    • Computers & Math
      • Robotics
      • Artificial Intelligence
      • Neural Interfaces
advertisement

  • RELATED TERMS
    • Robotic surgery
    • Robot
    • Tracheotomy
    • Industrial robot
    • Nanorobotics
    • Humanoid robot
    • Facial rejuvenation
    • Interventional radiology

1

2

3

4

5
RELATED STORIES

Researchers Help Give Robotic Arms a Steady Hand for Surgeries
Apr. 29, 2020 — Steady hands and uninterrupted, sharp vision are critical when performing surgery on delicate structures like the brain or hair-thin blood vessels. While surgical cameras have improved what surgeons ...
Handheld 3D Printers Developed to Treat Musculoskeletal Injuries
Feb. 27, 2020 — Biomedical engineers recently developed a handheld 3D bioprinter that could revolutionize the way musculoskeletal surgical procedures are ...
Surgical Eye Robot Performs Precision-Injection in Patient With Retinal Vein Occlusion
Jan. 26, 2017 — Surgeons have operated on a patient with retinal vein occlusion using a surgical robot. Operated by an eye surgeon, the robot uses a needle of barely 0.03 millimeter to inject a thrombolytic drug ...
Is There Difference in Surgical Site Infection Using Sterile Vs. Nonsterile Gloves?
Aug. 3, 2016 — Outpatient cutaneous surgical procedures are common and surgical gloves are standard practice to prevent postoperative surgical site infection. But, is there a difference in SSIs when sterile vs. ...
FROM AROUND THE WEB

Below are relevant articles that may interest you. ScienceDaily shares links with scholarly publications in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

SPACE & TIME
Exploding Stars May Have Caused Mass Extinction on Earth, Study Shows
Hubble Snaps Close-Up of Celebrity Comet NEOWISE
Researchers Track Slowly Splitting 'Dent' in Earth's Magnetic Field
MATTER & ENERGY
Warming Greenland Ice Sheet Passes Point of No Return
The Best (and Worst) Materials for Masks
Mathematicians Unravel a Thread of String Theory
COMPUTERS & MATH
'Selfies' Could Be Used to Detect Heart Disease
Quantum Researchers Create an Error-Correcting Cat
Graph Theory: Solution to '3 Utilities Problem' Could Lead to Better Computers
advertisement

Strange & Offbeat
 

SPACE & TIME
Unveiling Rogue Planets With NASA's Roman Space Telescope
Spinning Black Hole Powers Jet by Magnetic Flux
A Quantum Thermometer to Measure the Coldest Temperatures in the Universe
MATTER & ENERGY
Scientists Slow and Steer Light With Resonant Nanoantennas
Exoskeleton Research Marches Forward With Study on Fit
Trapping and Controlling Light at the Interface of Atomically Thin Nanomaterials
COMPUTERS & MATH
Beam Me Up: Researchers Use 'Behavioral Teleporting' to Study Social Interactions
'Selfies' Could Be Used to Detect Heart Disease
Mathematicians Unravel a Thread of String Theory
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2020 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —