ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • Gut Bacteria Can Enhance Immunotherapy
  • Why Seasonal Flu Shots Don't 'Stick' Long-Term
  • Loss of Enzyme Boosts Fat Metabolism in Mice
  • Smiling Really Does Give You a Positive Outlook
  • Greenland Ice Sheet Passes Point of No Return
  • Woolly Rhinos Went Extinct Due to Climate Change
  • New Catalyst for Reduction of Carbon Dioxide
  • Yoga Shown to Improve Anxiety, Study Shows
  • Quantum Researchers Create Error-Correcting Cat
  • Most Distant Milky Way Look-Alike
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Researchers track slowly splitting 'dent' in Earth's magnetic field

Date:
August 17, 2020
Source:
NASA/Goddard Space Flight Center
Summary:
Scientists in geomagnetic, geophysics, and heliophysics research groups observe and model the SAA, to monitor and predict future changes - and help prepare for future challenges to satellites and humans in space.
Share:
FULL STORY

A small but evolving dent in Earth's magnetic field can cause big headaches for satellites.

advertisement

Earth's magnetic field acts like a protective shield around the planet, repelling and trapping charged particles from the Sun. But over South America and the southern Atlantic Ocean, an unusually weak spot in the field -- called the South Atlantic Anomaly, or SAA -- allows these particles to dip closer to the surface than normal. Particle radiation in this region can knock out onboard computers and interfere with the data collection of satellites that pass through it -- a key reason why NASA scientists want to track and study the anomaly.

The South Atlantic Anomaly is also of interest to NASA's Earth scientists who monitor the changes in magnetic field strength there, both for how such changes affect Earth's atmosphere and as an indicator of what's happening to Earth's magnetic fields, deep inside the globe.

Currently, the SAA creates no visible impacts on daily life on the surface. However, recent observations and forecasts show that the region is expanding westward and continuing to weaken in intensity. It is also splitting -- recent data shows the anomaly's valley, or region of minimum field strength, has split into two lobes, creating additional challenges for satellite missions.

A host of NASA scientists in geomagnetic, geophysics, and heliophysics research groups observe and model the SAA, to monitor and predict future changes -- and help prepare for future challenges to satellites and humans in space.

It's what's inside that counts

The South Atlantic Anomaly arises from two features of Earth's core: The tilt of its magnetic axis, and the flow of molten metals within its outer core.

advertisement

Earth is a bit like a bar magnet, with north and south poles that represent opposing magnetic polarities and invisible magnetic field lines encircling the planet between them. But unlike a bar magnet, the core magnetic field is not perfectly aligned through the globe, nor is it perfectly stable. That's because the field originates from Earth's outer core: molten, iron-rich and in vigorous motion 1800 miles below the surface. These churning metals act like a massive generator, called the geodynamo, creating electric currents that produce the magnetic field.

As the core motion changes over time, due to complex geodynamic conditions within the core and at the boundary with the solid mantle up above, the magnetic field fluctuates in space and time too. These dynamical processes in the core ripple outward to the magnetic field surrounding the planet, generating the SAA and other features in the near-Earth environment -- including the tilt and drift of the magnetic poles, which are moving over time. These evolutions in the field, which happen on a similar time scale to the convection of metals in the outer core, provide scientists with new clues to help them unravel the core dynamics that drive the geodynamo.

"The magnetic field is actually a superposition of fields from many current sources," said Terry Sabaka, a geophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Regions outside of the solid Earth also contribute to the observed magnetic field. However, he said, the bulk of the field comes from the core.

The forces in the core and the tilt of the magnetic axis together produce the anomaly, the area of weaker magnetism -- allowing charged particles trapped in Earth's magnetic field to dip closer to the surface.

The Sun expels a constant outflow of particles and magnetic fields known as the solar wind and vast clouds of hot plasma and radiation called coronal mass ejections. When this solar material streams across space and strikes Earth's magnetosphere, the space occupied by Earth's magnetic field, it can become trapped and held in two donut-shaped belts around the planet called the Van Allen Belts. The belts restrain the particles to travel along Earth's magnetic field lines, continually bouncing back and forth from pole to pole. The innermost belt begins about 400 miles from the surface of Earth, which keeps its particle radiation a healthy distance from Earth and its orbiting satellites.

advertisement

However, when a particularly strong storm of particles from the Sun reaches Earth, the Van Allen belts can become highly energized and the magnetic field can be deformed, allowing the charged particles to penetrate the atmosphere.

"The observed SAA can be also interpreted as a consequence of weakening dominance of the dipole field in the region," said Weijia Kuang, a geophysicist and mathematician in Goddard's Geodesy and Geophysics Laboratory. "More specifically, a localized field with reversed polarity grows strongly in the SAA region, thus making the field intensity very weak, weaker than that of the surrounding regions."

A pothole in space

Although the South Atlantic Anomaly arises from processes inside Earth, it has effects that reach far beyond Earth's surface. The region can be hazardous for low-Earth orbit satellites that travel through it. If a satellite is hit by a high-energy proton, it can short-circuit and cause an event called single event upset or SEU. This can cause the satellite's function to glitch temporarily or can cause permanent damage if a key component is hit. In order to avoid losing instruments or an entire satellite, operators commonly shut down non-essential components as they pass through the SAA. Indeed, NASA's Ionospheric Connection Explorer regularly travels through the region and so the mission keeps constant tabs on the SAA's position.

The International Space Station, which is in low-Earth orbit, also passes through the SAA. It is well protected, and astronauts are safe from harm while inside. However, the ISS has other passengers affected by the higher radiation levels: Instruments like the Global Ecosystem Dynamics Investigation mission, or GEDI, collect data from various positions on the outside of the ISS. The SAA causes "blips" on GEDI's detectors and resets the instrument's power boards about once a month, said Bryan Blair, the mission's deputy principal investigator and instrument scientist, and a lidar instrument scientist at Goddard.

"These events cause no harm to GEDI," Blair said. "The detector blips are rare compared to the number of laser shots -- about one blip in a million shots -- and the reset line event causes a couple of hours of lost data, but it only happens every month or so."

In addition to measuring the SAA's magnetic field strength, NASA scientists have also studied the particle radiation in the region with the Solar, Anomalous, and Magnetospheric Particle Explorer, or SAMPEX -- the first of NASA's Small Explorer missions, launched in 1992 and providing observations until 2012. One study, led by NASA heliophysicist Ashley Greeley as part of her doctoral thesis, used two decades of data from SAMPEX to show that the SAA is slowly but steadily drifting in a northwesterly direction. The results helped confirm models created from geomagnetic measurements and showed how the SAA's location changes as the geomagnetic field evolves.

"These particles are intimately associated with the magnetic field, which guides their motions," said Shri Kanekal, a researcher in the Heliospheric Physics Laboratory at NASA Goddard. "Therefore, any knowledge of particles gives you information on the geomagnetic field as well."

Greeley's results, published in the journal Space Weather, were also able to provide a clear picture of the type and amount of particle radiation satellites receive when passing through the SAA, which emphasized the need for continuing monitoring in the region.

The information Greeley and her collaborators garnered from SAMPEX's in-situ measurements has also been useful for satellite design. Engineers for the Low-Earth Orbit, or LEO, satellite used the results to design systems that would prevent a latch-up event from causing failure or loss of the spacecraft.

Modeling a safer future for satellites

In order to understand how the SAA is changing and to prepare for future threats to satellites and instruments, Sabaka, Kuang and their colleagues use observations and physics to contribute to global models of Earth's magnetic field.

The team assesses the current state of the magnetic field using data from the European Space Agency's Swarm constellation, previous missions from agencies around the world, and ground measurements. Sabaka's team teases apart the observational data to separate out its source before passing it on to Kuang's team. They combine the sorted data from Sabaka's team with their core dynamics model to forecast geomagnetic secular variation (rapid changes in the magnetic field) into the future.

The geodynamo models are unique in their ability to use core physics to create near-future forecasts, said Andrew Tangborn, a mathematician in Goddard's Planetary Geodynamics Laboratory.

"This is similar to how weather forecasts are produced, but we are working with much longer time scales," he said. "This is the fundamental difference between what we do at Goddard and most other research groups modeling changes in Earth's magnetic field."

One such application that Sabaka and Kuang have contributed to is the International Geomagnetic Reference Field, or IGRF. Used for a variety of research from the core to the boundaries of the atmosphere, the IGRF is a collection of candidate models made by worldwide research teams that describe Earth's magnetic field and track how it changes in time.

"Even though the SAA is slow-moving, it is going through some change in morphology, so it's also important that we keep observing it by having continued missions," Sabaka said. "Because that's what helps us make models and predictions."

The changing SAA provides researchers new opportunities to understand Earth's core, and how its dynamics influence other aspects of the Earth system, said Kuang. By tracking this slowly evolving "dent" in the magnetic field, researchers can better understand the way our planet is changing and help prepare for a safer future for satellites.

make a difference: sponsored opportunity

Story Source:

Materials provided by NASA/Goddard Space Flight Center. Original written by Mara Johnson-Groh and Jessica Merzdorf. Note: Content may be edited for style and length.


Cite This Page:

  • MLA
  • APA
  • Chicago
NASA/Goddard Space Flight Center. "Researchers track slowly splitting 'dent' in Earth's magnetic field." ScienceDaily. ScienceDaily, 17 August 2020. <www.sciencedaily.com/releases/2020/08/200817144121.htm>.
NASA/Goddard Space Flight Center. (2020, August 17). Researchers track slowly splitting 'dent' in Earth's magnetic field. ScienceDaily. Retrieved August 17, 2020 from www.sciencedaily.com/releases/2020/08/200817144121.htm
NASA/Goddard Space Flight Center. "Researchers track slowly splitting 'dent' in Earth's magnetic field." ScienceDaily. www.sciencedaily.com/releases/2020/08/200817144121.htm (accessed August 17, 2020).

  • RELATED TOPICS
    • Space & Time
      • Satellites
      • Sun
      • Solar Flare
      • Black Holes
    • Earth & Climate
      • Atmosphere
      • Geomagnetic Storms
      • Earth Science
      • Geology
advertisement

  • RELATED TERMS
    • Weather forecasting
    • Presentism (philosophy of time)
    • Space debris
    • Earth science
    • Climate model
    • Space exploration
    • Geophysics
    • Geomagnetic storm

1

2

3

4

5
RELATED STORIES

Geomagnetic Jerks Finally Reproduced and Explained
Apr. 22, 2019 — The Earth's magnetic field experiences unpredictable, rapid, and intense anomalies that are known as geomagnetic jerks. The mechanisms behind this phenomenon had remained a mystery until the ...
Squeezing Innovation out of the NASA Twins Study: Pipetting and Cell Isolation in Space
July 11, 2017 — NASA is evaluating more efficient research techniques to prepare for the journey to Mars. Innovative thinking could improve the way biological samples are processed and transported from space back to ...
NASA's NavCube Could Support an X-Ray Communications Demonstration in Space
Nov. 4, 2016 — Two proven technologies have been combined to create a promising new technology that could meet future navigational challenges in deep space. It also may help demonstrate -- for the first time -- ...
Researchers Discover Effect of Rare Solar Wind on Earth's Radiation Belts
Oct. 6, 2016 — Unique measurements of the Van Allen radiation belts, which circle the Earth, have been captured during an extremely rare solar wind event. The findings, which have never been reported before, may be ...
FROM AROUND THE WEB

Below are relevant articles that may interest you. ScienceDaily shares links with scholarly publications in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

PLANTS & ANIMALS
'AeroNabs' Promise Powerful, Inhalable Protection Against COVID-19
COVID-19 False Negative Test Results If Used Too Early
Photosynthetic Hacks Can Boost Crop Yield, Conserve Water
EARTH & CLIMATE
Past Evidence Supports Complete Loss of Arctic Sea-Ice by 2035
Study Predicts Millions of Unsellable Homes Could Upend Market
Ancient Genomes Suggest Woolly Rhinos Went Extinct Due to Climate Change, Not Overhunting
FOSSILS & RUINS
Boy or Girl? It's in the Father's Genes
Blue-Eyed Humans Have a Single, Common Ancestor
Cooling of Earth Caused by Eruptions, Not Meteors
advertisement

Strange & Offbeat
 

PLANTS & ANIMALS
One Step Closer to Bomb-Sniffing Cyborg Locusts
Who's Your Daddy? Male Seahorses Transport Nutrients to Embryos
Swallowing This Colonoscopy-Like Bacteria Grabber Could Reveal Secrets About Your Health
EARTH & CLIMATE
Ocean Microbes Could Interact With Pollution to Influence Climate
Aurora Mysteries Unlocked With NASA's THEMIS Mission
How Airplanes Counteract St. Elmo's Fire During Thunderstorms
FOSSILS & RUINS
Evolutionary Theory of Economic Decisions
Most Close Relatives of Birds Neared the Potential for Powered Flight but Few Crossed Its Thresholds
New Study Confirms the Power of Deinosuchus and Its 'Teeth the Size of Bananas'
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2020 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —