ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • Severe COVID: Ancient Part of Immune System
  • Early Mars Covered in Ice Sheets, Not Rivers?
  • NASA Astronauts Safely Splash Down
  • Cooling Caused by Eruptions, Not Meteors
  • 'Little Brain' Not So Little After All
  • New Model Predicts Big Solar Flares
  • Surprising Number of Exoplanets Could Host Life
  • Possible Sign of Neutron Star in Supernova
  • Mars Rover Mission to Red Planet Launched
  • Evolution of the Earliest Dinosaurs
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Peptide makes drug-resistant bacteria sensitive to antibiotics again

Peptide also kills multidrug-resistant bacteria on its own

Date:
August 6, 2020
Source:
Nanyang Technological University
Summary:
Scientists have developed a synthetic peptide that can make multidrug-resistant bacteria sensitive to antibiotics again when used together with traditional antibiotics, offering hope for the prospect of a combination treatment strategy to tackle certain antibiotic-tolerant infections. On its own, the synthetic antimicrobial peptide can also kill bacteria that have grown resistant to antibiotics.
Share:
FULL STORY

Scientists at Nanyang Technological University, Singapore (NTU Singapore) have developed a synthetic peptide that can make multidrug-resistant bacteria sensitive to antibiotics again when used together with traditional antibiotics, offering hope for the prospect of a combination treatment strategy to tackle certain antibiotic-tolerant infections.

advertisement

On its own, the synthetic antimicrobial peptide can also kill bacteria that have grown resistant to antibiotics.

Every year, an estimated 700,000 people globally die of antibiotic-resistant diseases, according to the World Health Organisation. In the absence of new therapeutics, infections caused by resistant superbugs could kill an additional 10 million people each year worldwide by 2050, surpassing cancer. Antibiotic resistance arises in bacteria when they can recognise and prevent drugs that would otherwise kill them, from passing through their cell wall.

This threat is accelerated by the developing COVID-19 pandemic, with patients admitted to hospitals often receiving antibiotics to keep secondary bacterial infections in check, amplifying the opportunity for resistant pathogens to emerge and spread.

The NTU Singapore team, led by Associate Professor Kimberly Kline and Professor Mary Chan, developed an antimicrobial peptide known as CSM5-K5 comprising repeated units of chitosan, a sugar found in crustacean shells that bears structural resemblance to the bacterial cell wall, and repeated units of the amino acid lysine.

The scientists believe that chitosan's structural similarity to the bacterial cell wall helps the peptide interact with and embed itself in it, causing defects in the wall and membrane that eventually kill the bacteria.

advertisement

The team tested the peptide on biofilms, which are slimy coats of bacteria that can cling onto surfaces such as living tissues or medical devices in hospitals, and which are difficult for traditional antibiotics to penetrate.

In both preformed biofilms in the lab and biofilms formed on wounds in mice, the NTU-developed peptide killed at least 90 per cent of the bacteria strains in four to five hours.

In separate experiments, when CSM5-K5 was used with antibiotics that the bacteria are otherwise resistant to, more bacteria was killed off as compared to when CSM5-K5 was used alone, suggesting that the peptide rendered the bacteria susceptible to antibiotics. The amount of antibiotics used in this combination therapy was also at a concentration lower than what is commonly prescribed.

The findings were published in the scientific journal ACS Infectious Diseases in May.

Assoc Prof Kimberly Kline, a Principal Investigator at the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) at NTU, said: "Our findings show that our antimicrobial peptide is effective whether used alone or in combination with conventional antibiotics to fight multidrug-resistant bacteria. Its potency increases when used with antibiotics, restoring the bacteria's sensitivity to drugs again. More importantly, we found that the bacteria we tested developed little to no resistance against our peptide, making it an effective and feasible addition to antibiotics as a viable combination treatment strategy as the world grapples with rising antibiotic resistance."

Prof Mary Chan, director of NTU's Centre of Antimicrobial Bioengineering, said: "While efforts are focussed on dealing with the COVID-19 pandemic, we should also remember that antibiotic resistance continues to be a growing problem, where secondary bacterial infections that develop in patients could complicate matters, posing a threat in the healthcare settings. For instance, viral respiratory infections could allow bacteria to enter the lungs more easily, leading to bacterial pneumonia, which is commonly associated with COVID-19."

advertisement

How the antimicrobial peptide works

Antimicrobial peptides, which carry a positive electric charge, typically work by binding to the negatively-charged bacterial membranes, disrupting the membrane and causing the bacteria to die eventually. The more positively charged a peptide is, the more efficient it is in binding to bacteria and thus killing them.

However, the peptide's toxicity to the host also increases in line with the peptide's positive charge -- it damages the host organism's cells as it kills bacteria. As a result, engineered antimicrobial peptides to date have met with limited success, said Assoc Prof Kline, who is also from the NTU School of Biological Sciences.

The peptide designed by the NTU team, called CSM5-K5, is able to cluster together to form nanoparticles when it is applied to bacteria biofilms. This clustering results in a more concentrated disruptive effect on the bacterial cell wall when compared to the activity of single chains of peptides, meaning it has high antibacterial activity but without causing undue damage to healthy cells.

To examine CSM5-K5's efficacy on its own, the NTU scientists developed separate biofilms comprising methicillin-resistant Staphylococcus aureus, commonly known as the MRSA superbug; a highly virulent multidrug-resistant strain of Escherichia coli (MDR E. Coli); and vancomycin-resistant Enterococcus faecalis (VRE). MRSA and VRE are classified as serious threats by the US Centers for Disease Control and Prevention.

In lab experiments, CSM5-K5 killed more than 99 per cent of the biofilm bacteria after four hours of treatment. In infected wounds on mice, the NTU-developed antimicrobial peptide killed more than 90 per cent of the bacteria.

When CSM5-K5 was used with conventional antibiotics, the NTU team found that the combination approach led to a further reduction in the bacteria in both lab-formed biofilms and infected wounds in mice as compared to when only CSM5-K5 was used, suggesting that the antimicrobial peptide made the bacteria sensitive to the drugs they would otherwise be resistant to.

More importantly, the NTU team found that the three strains of bacteria studied (MRSA, VRE and MDR E. coli) developed little to no resistance against CSM5-K5. While MRSA developed low-level resistance against CSM5-K5, this made MRSA more sensitive to the drug it is otherwise resistant to.

Prof Chan said: "Developing new drugs alone is no longer sufficient to fight difficult-to-treat bacterial infections, as bacteria continue to evolve and outsmart antibiotics/ It is important to look at innovative ways to tackle difficult-to-treat bacterial infections associated with antibiotic resistance and biofilms, such as tackling the bacteria's defence mechanisms. A more effective and economic method to fight bacteria is through a combination therapy approach like ours."

The next step forward for the team is to explore how such a combination therapy approach can be used for rare diseases or for wound dressing.

The research on the CSM5-K5 antimicrobial peptide was funded by NTU, the National Research Foundation, the Ministry of Education, and the Ministry of Health.

make a difference: sponsored opportunity

Story Source:

Materials provided by Nanyang Technological University. Note: Content may be edited for style and length.


Journal Reference:

  1. Kishore R. V. Thappeta, Yogesh S. Vikhe, Adeline M. H. Yong, Mary B. Chan-Park, Kimberly A. Kline. Combined Efficacy of an Antimicrobial Cationic Peptide Polymer with Conventional Antibiotics to Combat Multidrug-Resistant Pathogens. ACS Infectious Diseases, 2020; 6 (5): 1228 DOI: 10.1021/acsinfecdis.0c00016

Cite This Page:

  • MLA
  • APA
  • Chicago
Nanyang Technological University. "Peptide makes drug-resistant bacteria sensitive to antibiotics again: Peptide also kills multidrug-resistant bacteria on its own." ScienceDaily. ScienceDaily, 6 August 2020. <www.sciencedaily.com/releases/2020/08/200806101806.htm>.
Nanyang Technological University. (2020, August 6). Peptide makes drug-resistant bacteria sensitive to antibiotics again: Peptide also kills multidrug-resistant bacteria on its own. ScienceDaily. Retrieved August 6, 2020 from www.sciencedaily.com/releases/2020/08/200806101806.htm
Nanyang Technological University. "Peptide makes drug-resistant bacteria sensitive to antibiotics again: Peptide also kills multidrug-resistant bacteria on its own." ScienceDaily. www.sciencedaily.com/releases/2020/08/200806101806.htm (accessed August 6, 2020).

  • RELATED TOPICS
    • Health & Medicine
      • Infectious Diseases
      • Pharmacology
      • Pharmaceuticals
      • Wounds and Healing
    • Plants & Animals
      • Bacteria
      • Microbes and More
      • Microbiology
      • Extreme Survival
advertisement

  • RELATED TERMS
    • Penicillin-like antibiotics
    • Antibiotic resistance
    • Antiviral drug
    • Pneumonia
    • Organic food
    • Pathogen
    • Endospore
    • Bacteria

1

2

3

4

5
RELATED STORIES

Antibiotics With Novel Mechanism of Action Discovered
Oct. 23, 2019 — Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics. Researchers have now discovered a new class of antibiotics with a unique spectrum of activity and mechanism ...
Bioinspired Agent Kills Drug-Resistant Bacteria
May 2, 2017 — Microbial resistance to antibiotics and biocides is increasing, and our ability to effectively treat bacterial infections and contamination is under threat. Researchers have developed an ...
Novel Antibiotic Resistance Gene in Milk
Apr. 26, 2017 — A new antibiotic resistance gene has been found in bacteria from dairy cows. This gene confers resistance to all beta-lactam antibiotics including the last generation of cephalosporins used against ...
Engineers Design a New Weapon Against Bacteria
Nov. 2, 2016 — Over the past few decades, many bacteria have become resistant to existing antibiotics, and few new drugs have emerged. A recent study from a U.K. commission on antimicrobial resistance estimated ...
FROM AROUND THE WEB

Below are relevant articles that may interest you. ScienceDaily shares links with scholarly publications in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

PLANTS & ANIMALS
COVID-19 False Negative Test Results If Used Too Early
'Little Brain' or Cerebellum Not So Little After All
In Cell Studies, Seaweed Extract Outperforms Remdesivir in Blocking COVID-19 Virus
EARTH & CLIMATE
Cooling of Earth Caused by Eruptions, Not Meteors
Early Mars Was Covered in Ice Sheets, Not Flowing Rivers, Researchers Say
New Fabric Could Help Keep You Cool in the Summer, Even Without A/C
FOSSILS & RUINS
Boy or Girl? It's in the Father's Genes
Neanderthals May Have Had a Lower Threshold for Pain
Plato Was Right: Earth Is Made, on Average, of Cubes
advertisement

Strange & Offbeat
 

PLANTS & ANIMALS
This Fruit Attracts Birds With an Unusual Way of Making Itself Metallic Blue
Faster Rates of Evolution Are Linked to Tiny Genomes
Dinosaur Relative's Genome Linked to Mammals: Curious Genome of Ancient Reptile
EARTH & CLIMATE
New Studies Show How to Save Parasites and Why It's Important
New Fabric Could Help Keep You Cool in the Summer, Even Without A/C
Deep Sea Microbes Dormant for 100 Million Years Are Hungry and Ready to Multiply
FOSSILS & RUINS
Malignant Cancer Diagnosed in a Dinosaur for the First Time
Neanderthals May Have Had a Lower Threshold for Pain
Giant, Fruit-Gulping Pigeon Eaten Into Extinction on Pacific Islands
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2020 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —