ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • Variant of COVID-19 Virus Dominates Globally
  • How the Brain Organizes Information About Odors
  • Metal in Moon's Craters: Insight Into Origin
  • COVID-19: Hyperactivity in Blood-Clotting Cells
  • Shutting Down SARS-CoV-2 Polymerase Reaction
  • To Find Giant Black Holes, Start With Jupiter
  • Extreme Warming of the South Pole
  • Cosmic Mystery: Disappearance of a Massive Star
  • Global Warming Upends 6,500 Years of Cooling
  • Beavers Gnawing Away at the Permafrost
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Atomic 'Swiss army knife' precisely measures materials for quantum computers

Blueprint for building a three-in-one measurement tool to study quantum materials

Date:
July 6, 2020
Source:
National Institute of Standards and Technology (NIST)
Summary:
Scientists have developed a novel instrument that can make three kinds of atom-scale measurements simultaneously.
Share:
FULL STORY

It images single atoms. It maps atomic-scale hills and valleys on metal and insulating surfaces. And it records the flow of current across atom-thin materials subject to giant magnetic fields. Scientists at the National Institute of Standards and Technology (NIST) have developed a novel instrument that can make three kinds of atom-scale measurements simultaneously. Together, these measurements can uncover new knowledge about a wide range of special materials that are crucial for developing the next generation of quantum computers, communications and a host of other applications.

advertisement

From smartphones to multicookers, devices that perform several functions are often more convenient and potentially less expensive than the single-purpose tools they replace, and their multiple functions often work better in concert than separately. The new three-in-one instrument is a kind of Swiss Army knife for atom-scale measurements. NIST researcher Joseph Stroscio and his colleagues, including Johannes Schwenk and Sungmin Kim, present a detailed recipe for building the device in the Review of Scientific Instruments.

"We describe a blueprint for other people to copy," Stroscio said. "They can modify the instruments they have; they don't have to buy new equipment."

By simultaneously conducting measurements on scales ranging from nanometers to millimeters, the instrument can help researchers zero in on the atomic origins of several unusual properties in materials that may prove invaluable for a new generation of computers and communication devices. These properties include the resistance-less flow of electric current, quantum jumps in electrical resistance that could serve as novel electrical switches, and new methods to design quantum bits, which could lead to solid-state-based quantum computers.

"By connecting the atomic with the large scale, we can characterize materials in a way that we couldn't before," said Stroscio.

Although the properties of all substances have their roots in quantum mechanics -- the physical laws that govern the Lilliputian realm of atoms and electrons -- quantum effects can often be ignored on large scales such as the macroscopic world we experience every day. But for a highly promising class of materials known as quantum materials, which typically consist of one or more atomically thin layers, strong quantum effects between groups of electrons persist over large distances and the rules of quantum theory can dominate even on macroscopic length scales. These effects lead to remarkable properties that can be harnessed for new technologies.

advertisement

To study these properties more precisely, Stroscio and his colleagues combined in a single instrument a trio of precision measuring devices. Two of the devices, an atomic force microscope (AFM) and a scanning tunneling microscope (STM), examine microscopic properties of solids, while the third tool records the macroscopic property of magnetic transport -- the flow of current in the presence of a magnetic field.

"No single type of measurement provides all the answers for understanding quantum materials," said NIST researcher Nikolai Zhitenev. "This device, with multiple measuring tools, provides a more comprehensive picture of these materials."

To build the instrument, the NIST team designed an AFM and a magnetic-transport-measuring device that were more compact and had fewer moving parts than previous versions. They then integrated the tools with an existing STM.

Both an STM and an AFM use a needle-sharp tip to examine the atomic-scale structure of surfaces. An STM maps the topography of metal surfaces by placing the tip within a fraction of a nanometer (billionth of a meter) of the material under study. By measuring the flow of electrons that tunnels out of the metal surface as the sharp tip hovers just above the material, the STM reveals the sample's atomic-scale hills and valleys.

In contrast, an AFM measures forces by changes in the frequency at which its tip oscillates as it hovers over a surface. (The tip is mounted on a miniature cantilever, which allows the probe to swing freely.) The oscillation frequency shifts as the sharp probe senses forces, such as the attraction between molecules, or the electrostatic forces with the material's surface. To measure magnetic transport, a current is applied across a surface immersed in a known magnetic field. A voltmeter records the voltage at different places on the device, revealing the electrical resistance of the material.

advertisement

The ensemble is mounted inside a cryostat, a device that chills the system to one-hundredth of a degree above absolute zero. At that temperature, the random quantum jitter of atomic particles is minimized and large-scale quantum effects become more pronounced and easier to measure. The three-in-one device, which is shielded from external electrical noise, is also five to 10 times more sensitive than any previous set of similar instruments, approaching the fundamental quantum noise limit that can be achieved at low temperatures.

Although it's possible for three entirely independent instruments -- an STM, an AFM and a magnetic transport setup -- to make the same measurements, inserting and then retracting each tool can disturb the sample and diminish the accuracy of the analysis. Separate instruments can also make it difficult to replicate the exact conditions, such as the temperature and rotation angle between each ultrathin layer of the quantum material, under which previous measurements were made.

To achieve the goal of a three-in-one instrument with high sensitivity, the NIST team partnered with an international team of experts, including Franz Giessibl from the University of Regensburg, Germany, who invented a highly effective AFM known as the qPlus AFM. The team chose a compact design that increased the stiffness of the microscope and outfitted the system with a series of filters to screen out radio frequency noise. The atomically thin needle of the STM doubled as the force sensor for the AFM, which was based on a new force sensor design created by Giessibl for the three-in-one instrument.

For Stroscio, a pioneer in building ever-more-sophisticated STMs, the new device is something of a pinnacle in a more than three-decade career in scanning probe microscopy. His team, he noted, had been struggling for several years to dramatically reduce the electrical noise in its measurements. "We have now achieved the ultimate resolution given by thermal and quantum limits in this new instrument," Stroscio said.

"This feels like I've climbed the highest peak of the Rocky Mountains," he added. "It's a nice synthesis of everything I've learned over the last 30-plus years."

make a difference: sponsored opportunity

Story Source:

Materials provided by National Institute of Standards and Technology (NIST). Note: Content may be edited for style and length.


Journal Reference:

  1. Johannes Schwenk, Sungmin Kim, Julian Berwanger, Fereshte Ghahari, Daniel Walkup, Marlou R. Slot, Son T. Le, William G. Cullen, Steven R. Blankenship, Sasa Vranjkovic, Hans J. Hug, Young Kuk, Franz J. Giessibl, Joseph A. Stroscio. Achieving μeV tunneling resolution in an in-operando scanning tunneling microscopy, atomic force microscopy, and magnetotransport system for quantum materials research. Review of Scientific Instruments, 2020; 91 (7): 071101 DOI: 10.1063/5.0005320

Cite This Page:

  • MLA
  • APA
  • Chicago
National Institute of Standards and Technology (NIST). "Atomic 'Swiss army knife' precisely measures materials for quantum computers: Blueprint for building a three-in-one measurement tool to study quantum materials." ScienceDaily. ScienceDaily, 6 July 2020. <www.sciencedaily.com/releases/2020/07/200706173446.htm>.
National Institute of Standards and Technology (NIST). (2020, July 6). Atomic 'Swiss army knife' precisely measures materials for quantum computers: Blueprint for building a three-in-one measurement tool to study quantum materials. ScienceDaily. Retrieved July 6, 2020 from www.sciencedaily.com/releases/2020/07/200706173446.htm
National Institute of Standards and Technology (NIST). "Atomic 'Swiss army knife' precisely measures materials for quantum computers: Blueprint for building a three-in-one measurement tool to study quantum materials." ScienceDaily. www.sciencedaily.com/releases/2020/07/200706173446.htm (accessed July 6, 2020).

  • RELATED TOPICS
    • Matter & Energy
      • Physics
      • Materials Science
      • Spintronics
      • Quantum Physics
    • Computers & Math
      • Spintronics Research
      • Quantum Computers
      • Computers and Internet
      • Encryption
advertisement

  • RELATED TERMS
    • Absolute zero
    • Scientific visualization
    • Lewis structure in chemistry
    • Massively multiplayer online game
    • Atom
    • Richter magnitude scale
    • Nanorobotics
    • Electron

1

2

3

4

5
RELATED STORIES

Catalyst Advance Could Lead to Economical Fuel Cells
Aug. 30, 2018 — Researchers have developed a new way to make low-cost, single-atom catalysts for fuel cells -- an advance that could make important clean energy technology more economically ...
A Preparative-Scale Reaction Using Platinum Clusters With a Single-Digit Atomicity Realized
Sep. 25, 2017 — Scientists have recently developed a fully scalable method for the synthesis of atom-precise platinum clusters for potential use in catalytic applications. This method could provide a new pathway for ...
Hollow Atoms: The Consequences of an Underestimated Effect
Sep. 11, 2017 — In a 'hollow atom', electrons occupy high-energy states far away from the nucleus, it can get rid of their excess energy on a remarkably short timescale. The reason for this has been unknown. ...
Computers Create Recipe for Two New Magnetic Materials
Apr. 15, 2017 — Material scientists have predicted and built two new magnetic materials, atom-by-atom, using high-throughput computational models. The success marks a new era for the large-scale design of new ...
FROM AROUND THE WEB

Below are relevant articles that may interest you. ScienceDaily shares links with scholarly publications in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

SPACE & TIME
Very Large Telescope | Credit: (c) CPO / stock.adobe.comA Cosmic Mystery: ESO Telescope Captures the Disappearance of a Massive Star
Illustration of black | Credit: (c) vchalup / stock.adobe.comTo Find Giant Black Holes, Start With Jupiter
The Moon (stock | Credit: (c) David Woods / stock.adobe.comHigher Concentration of Metal in Moon's Craters Provides New Insights to Its Origin
MATTER & ENERGY
The Best Material for Homemade Face Masks May Be a Combination of Two Fabrics
Leaves in sunlight | Credit: (c) Olivier Le Moal / stock.adobe.comWhy Are Plants Green?
Killing Coronavirus With Handheld Ultraviolet Light Device May Be Feasible
COMPUTERS & MATH
Quantum Physics Provides a Way to Hide Ignorance
How at Risk Are You of Getting a Virus on an Airplane?
No Keys to the Kingdom: New Single Sign-on Algorithm Provides Superior Privacy
advertisement

Strange & Offbeat
 

SPACE & TIME
White Dwarfs Reveal New Insights Into the Origin of Carbon in the Universe
Scientific 'Red Flag' Reveals New Clues About Our Galaxy
Beacon from the Early Universe
MATTER & ENERGY
Making Plastic More Transparent While Also Adding Electrical Conductivity
Cell 'Membrane on a Chip' Could Speed Up Screening of Drug Candidates for COVID-19
Flexible Material Shows Potential for Use in Fabrics to Heat, Cool
COMPUTERS & MATH
Research Reflects How AI Sees Through the Looking Glass
Jellyfish-Inspired Soft Robots Can Outswim Their Natural Counterparts
New System Combines Smartphone Videos to Create 4D Visualizations
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2020 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —