ScienceDaily
Your source for the latest research news
Follow Facebook Twitter LinkedIn Subscribe RSS Feeds Newsletters
New:
  • To Find Giant Black Holes, Start With Jupiter
  • Extreme Warming of the South Pole
  • Cosmic Mystery: Disappearance of a Massive Star
  • Global Warming Upends 6,500 Years of Cooling
  • Beavers Gnawing Away at the Permafrost
  • End of Dinosaurs: Asteroid Impact, Not Volcanoes
  • Why Some Words More Memorable Than Others
  • Humans and Monkeys: Similar Thinking Patterns
  • Sled Dogs Like 9,500-Year-Old 'Ancient Dog'
  • Receptor Makes Mice Strong and Slim
advertisement
Follow all of ScienceDaily's latest research news and top science headlines!
Science News
from research organizations

1

2

Researchers use 3D modeling to decode aerial undulation's role in flying snake glides

Date:
June 29, 2020
Source:
Virginia Tech
Summary:
Researchers have developed the first continuous, anatomically accurate 3D mathematical model of the paradise tree snake in flight.
Share:
FULL STORY

Paradise tree snake | Credit: © Alessandro / stock.adobe.com
Paradise tree snake (stock image).
Credit: © Alessandro / stock.adobe.com
Paradise tree snake | Credit: © Alessandro / stock.adobe.com
Paradise tree snake (stock image).
Credit: © Alessandro / stock.adobe.com

When the paradise tree snake flies from one tall branch to another, its body ripples with waves like green cursive on a blank pad of blue sky. That movement, aerial undulation, happens in each glide made by members of the Chrysopelea family, the only known limbless vertebrates capable of flight. Scientists have known this, but have yet to fully explain it.

advertisement

For more than 20 years, Jake Socha, a professor in the Department of Biomedical Engineering and Mechanics at Virginia Tech, has sought to measure and model the biomechanics of snake flight and answer questions about them, like that of aerial undulation's functional role. For a study published by Nature Physics, Socha assembled an interdisciplinary team to develop the first continuous, anatomically-accurate 3D mathematical model of Chrysopelea paradisi in flight.

The team, which included Shane Ross, a professor in the Kevin T. Crofton Department of Aerospace and Ocean Engineering, and Isaac Yeaton, a recent mechanical engineering doctoral graduate and the paper's lead author, developed the 3D model after measuring more than 100 live snake glides. The model factors in frequencies of undulating waves, their direction, forces acting on the body, and mass distribution. With it, the researchers have run virtual experiments to investigate aerial undulation.

In one set of those experiments, to learn why undulation is a part of each glide, they simulated what would happen if it wasn't -- by turning it off. When their virtual flying snake could no longer aerially undulate, its body began to tumble. The test, paired with simulated glides that kept the waves of undulation going, confirmed the team's hypothesis: aerial undulation enhances rotational stability in flying snakes.

Questions of flight and movement fill Socha's lab. The group has fit their work on flying snakes between studies of how frogs leap from water and skitter across it, how blood flows through insects, and how ducks land on ponds. In part, it was important to Socha to probe undulation's functional role in snake glides because it would be easy to assume that it didn't really have one.

"We know that snakes undulate for all kinds of reasons and in all kinds of locomotor contexts," said Socha. "That's their basal program. By program, I mean their neural, muscular program? -- they're receiving specific instructions: fire this muscle now, fire that muscle, fire this muscle. It's ancient. It goes beyond snakes. That pattern of creating undulations is an old one. It's quite possible that a snake gets into the air, then it goes, 'What do I do? I'm a snake. I undulate.'"

But Socha believed there was much more to it. Throughout the paradise tree snake's flight, so many things happen at once, it's difficult to untangle them with the naked eye. Socha described a few steps that take place with each glide ? -- steps that read as intentional.

advertisement

First, the snake jumps, usually by curving its body into a "J-loop" and springing up and out. As it launches, the snake reconfigures its shape, its muscles shifting to flatten its body out everywhere but the tail. The body becomes a "morphing wing" that produces lift and drag forces when air flows over it, as it accelerates downward under gravity. Socha has examined these aerodynamic properties in multiple studies. With the flattening comes undulation, as the snake sends waves down its body.

At the outset of the study, Socha had a theory for aerial undulation he explained by comparing two types of aircraft: jumbo jets versus fighter jets. Jumbo jets are designed for stability and start to level back out on their own when perturbed, he said, whereas fighters roll out of control.

So which would the snake be?

"Is it like a big jumbo jet, or is it naturally unstable?" Socha said. "Is this undulation potentially a way of it dealing with stability?"

He believed the snake would be more like a fighter jet.

advertisement

To run tests investigating undulation's importance to stability, the team set out to develop a 3D mathematical model that could produce simulated glides. But first, they needed to measure and analyze what real snakes do when gliding.

In 2015, the researchers collected motion capture data from 131 live glides made by paradise tree snakes. They turned The Cube, a four-story black-box theater at the Moss Arts Center, into an indoor glide arena and used its 23 high-speed cameras to capture the snakes' motion as they jumped from 27 feet up -- from an oak tree branch atop a scissor lift -- and glided down to an artificial tree below, or onto the surrounding soft foam padding the team set out in sheets to cushion their landings.

The cameras put out infrared light, so the snakes were marked with infrared-reflective tape on 11 to 17 points along their bodies, allowing the motion capture system to detect their changing position over time. Finding the number of measurement points has been key to the study; in past experiments, Socha marked the snake at three points, then five, but those numbers didn't provide enough information. The data from fewer video points only provided a coarse understanding, making for choppy and low-fidelity undulation in the resulting models.

The team found a sweet spot in 11 to 17 points, which gave high-resolution data. "With this number, we could get a smooth representation of the snake, and an accurate one," said Socha.

The researchers went on to build the 3D model by digitizing and reproducing the snake's motion while folding in measurements they had previously collected on mass distribution and aerodynamics. An expert in dynamic modeling, Ross guided Yeaton's work on a continuous model by drawing inspiration from work in spacecraft motion.

He had worked with Socha to model flying snakes since 2013, and their previous models treated the snake's body in parts -- first in three parts, as a trunk, a middle, and an end, and then as a bunch of links. "This is the first one that's continuous," said Ross. "It's like a ribbon. It's the most realistic to this point."

In virtual experiments, the model showed that aerial undulation not only kept the snake from tipping over during glides, but it increased the horizontal and vertical distances traveled.

Ross sees an analogy for the snake's undulation in a frisbee's spin: the reciprocating motion increases rotational stability and results in a better glide. By undulating, he said, the snake is able to balance out the lift and drag forces its flattened body produces, rather than being overwhelmed by them and toppling, and it's able to go further.

The experiments also revealed to the team details they hadn't previously been able to visualize. They saw that the snake employed two waves when undulating: a large-amplitude horizontal wave and a newly discovered, smaller-amplitude vertical wave. The waves went side to side and up and down at the same time, and the data showed that the vertical wave went at twice the rate of the horizontal one. "This is really, really freaky," said Socha. These double waves have only been discovered in one other snake, a sidewinder, but its waves go at the same frequency.

"What really makes this study powerful is that we were able to dramatically advance both our understanding of glide kinematics and our ability to model the system," said Yeaton. "Snake flight is complicated, and it's often tricky to get the snakes to cooperate. And there are many intricacies to make the computational model accurate. But it's satisfying to put all of the pieces together."

"In all these years, I think I've seen close to a thousand glides," said Socha. "It's still amazing to see every time. Seeing it in person, there's something a little different about it. It's shocking still. What exactly is this animal doing? Being able to answer the questions I've had since I was a graduate student, many, many years later, is incredibly satisfying."

Socha credits some of the elements that shaped the real and simulated glide experiments to forces out of his control. Chance led him to the indoor glide arena: a few years after the Moss Arts Center opened, Tanner Upthegrove, a media engineer for the Institute for Creativity, Arts, and Technology, or ICAT, asked him if he'd ever thought about working in the Cube.

"What's the Cube?" he asked. When Upthegrove showed him the space, he was floored. It seemed designed for Socha's experiments.

In some ways, it was. "Many projects at ICAT used the advanced technology of the Cube, a studio unlike any other in the world, to reveal that which could normally not be seen," said Ben Knapp, the founding director of ICAT. "Scientists, engineers, artists, and designers join forces here to build, create, and innovate new ways to approach the world's grandest challenges."

In one of the center's featured projects, "Body, Full of Time," media and visual artists used the space to motion capture the body movements of dancers for an immersive performance. Trading dancers for snakes, Socha was able to make the most of the Cube's motion capture system. The team could move cameras around, optimizing their position for the snake's path. They took advantage of latticework at the top of the space to position two cameras pointing down, providing an overhead view of the snake, which they'd never been able to do before.

Socha and Ross see potential for their 3D model to continue exploring snake flight. The team is planning outdoor experiments to gather motion data from longer glides. And one day, they hope to cross the boundaries of biological reality.

Right now, their virtual flying snake always glides down, like the real animal. But what if they could get it to move so that it would actually start to go up? To really fly? That ability could potentially be built into the algorithms of robotic snakes, which have exciting applications in search and rescue and disaster monitoring, Ross said.

"Snakes are just so good at moving through complex environments," said Ross. "If you could add this new modality, it would work not only in a natural setting, but in an urban environment."

"In some ways, Virginia Tech is a hub for bio-inspired engineering," said Socha. "Studies like this one not only provide insight into how nature works, but lay the groundwork for design inspired by nature. Evolution is the ultimate creative tinkerer, and we're excited to continue to discover nature's solutions to problems like this one, extracting flight from a wiggling cylinder."

make a difference: sponsored opportunity

Story Source:

Materials provided by Virginia Tech. Note: Content may be edited for style and length.


Related Multimedia:

  • Images and video of the paradise tree snake flying

Journal Reference:

  1. Isaac J. Yeaton, Shane D. Ross, Grant A. Baumgardner, John J. Socha. Undulation enables gliding in flying snakes. Nature Physics, 2020; DOI: 10.1038/s41567-020-0935-4

Cite This Page:

  • MLA
  • APA
  • Chicago
Virginia Tech. "Researchers use 3D modeling to decode aerial undulation's role in flying snake glides." ScienceDaily. ScienceDaily, 29 June 2020. <www.sciencedaily.com/releases/2020/06/200629120156.htm>.
Virginia Tech. (2020, June 29). Researchers use 3D modeling to decode aerial undulation's role in flying snake glides. ScienceDaily. Retrieved June 30, 2020 from www.sciencedaily.com/releases/2020/06/200629120156.htm
Virginia Tech. "Researchers use 3D modeling to decode aerial undulation's role in flying snake glides." ScienceDaily. www.sciencedaily.com/releases/2020/06/200629120156.htm (accessed June 30, 2020).

  • RELATED TOPICS
    • Plants & Animals
      • Frogs and Reptiles
      • Invasive Species
      • Animals
      • Behavioral Science
    • Matter & Energy
      • Aviation
      • Quantum Physics
      • Virtual Environment
      • Vehicles
advertisement

  • RELATED TERMS
    • Garter snake
    • Flying squirrel
    • Artificial neural network
    • White's Tree Frog
    • Crotalus atrox
    • Whooping Crane
    • Concorde
    • Model rocket

1

2

3

4

5
RELATED STORIES

Pterosaurs and Other Fossil Flyers to Better Engineer Human-Made Flight
Apr. 15, 2020 — Pterosaurs were the largest animals ever to fly. They soared the skies for 160 million years -- much longer than any species of modern bird. Despite their aeronautic excellence, these ancient flyers ...
Bat Flight Model Can Inspire Smarter, Nimbler Drones
Mar. 13, 2019 — Engineers have captured the full complexity of bat flight in a three-dimensional computer model for the first time, potentially inspiring the future design of better drones and other aerial ...
Expert Unlocks Mechanics of How Snakes Move in a Straight Line
Jan. 12, 2018 — Biologists are studying the mechanics of snake movement to understand exactly how they can propel themselves forward like a train through a ...
Paper Pumps Power Portable Microfluidics, Biomedical Devices
Mar. 8, 2017 — Biomedical engineering researchers have developed inexpensive paper pumps that use capillary action to power portable microfluidic devices, opening the door to a range of biomedical ...
FROM AROUND THE WEB

Below are relevant articles that may interest you. ScienceDaily shares links with scholarly publications in the TrendMD network and earns revenue from third-party advertisers, where indicated.
  Print   Email   Share

advertisement

1

2

3

4

5
Most Popular
this week

PLANTS & ANIMALS
COVID-19 False Negative Test Results If Used Too Early
Origin of Life: Which Came First?
Why Are Plants Green?
EARTH & CLIMATE
Sled Dogs Are Closely Related to 9,500-Year-Old 'Ancient Dog'
Roadkill Study Identifies Animals Most at Risk in Europe
Scientists Detect Unexpected Widespread Structures Near Earth's Core
FOSSILS & RUINS
Massive Prehistoric Circle Near Stonehenge
Boy or Girl? It's in the Father's Genes
'Mitochondrial Eve': Mother of All Humans Lived 200,000 Years Ago
advertisement

Strange & Offbeat
 

PLANTS & ANIMALS
Beavers Gnawing Away at the Permafrost
New Extinct Family of Giant Wombat Relatives Discovered in Australian Desert
Laser-Welded Sugar: Sweet Way to 3D-Print Blood Vessels
EARTH & CLIMATE
How Volcanoes Explode in the Deep Sea
Soft Coral Garden Discovered in Greenland's Deep Sea
Unknown Currents in Southern Ocean Have Been Observed With Help of Seals
FOSSILS & RUINS
Bizarre Saber-Tooth Predator from South America Was No Saber-Tooth Cat
Sled Dogs Are Closely Related to 9,500-Year-Old 'Ancient Dog'
Eruption of Alaska's Okmok Volcano Linked to Period of Extreme Cold in Ancient Rome
SD
  • SD
    • Home Page
    • Top Science News
    • Latest News
  • Home
    • Home Page
    • Top Science News
    • Latest News
  • Health
    • View all the latest top news in the health sciences,
      or browse the topics below:
      Health & Medicine
      • Allergy
      • Alternative Medicine
      • Birth Control
      • Cancer
      • Diabetes
      • Diseases
      • Heart Disease
      • HIV and AIDS
      • Obesity
      • Stem Cells
      • ... more topics
      Mind & Brain
      • ADD and ADHD
      • Addiction
      • Alzheimer's
      • Autism
      • Depression
      • Headaches
      • Intelligence
      • Psychology
      • Relationships
      • Schizophrenia
      • ... more topics
      Living Well
      • Parenting
      • Pregnancy
      • Sexual Health
      • Skin Care
      • Men's Health
      • Women's Health
      • Nutrition
      • Diet and Weight Loss
      • Fitness
      • Healthy Aging
      • ... more topics
  • Tech
    • View all the latest top news in the physical sciences & technology,
      or browse the topics below:
      Matter & Energy
      • Aviation
      • Chemistry
      • Electronics
      • Fossil Fuels
      • Nanotechnology
      • Physics
      • Quantum Physics
      • Solar Energy
      • Technology
      • Wind Energy
      • ... more topics
      Space & Time
      • Astronomy
      • Black Holes
      • Dark Matter
      • Extrasolar Planets
      • Mars
      • Moon
      • Solar System
      • Space Telescopes
      • Stars
      • Sun
      • ... more topics
      Computers & Math
      • Artificial Intelligence
      • Communications
      • Computer Science
      • Hacking
      • Mathematics
      • Quantum Computers
      • Robotics
      • Software
      • Video Games
      • Virtual Reality
      • ... more topics
  • Enviro
    • View all the latest top news in the environmental sciences,
      or browse the topics below:
      Plants & Animals
      • Agriculture and Food
      • Animals
      • Biology
      • Biotechnology
      • Endangered Animals
      • Extinction
      • Genetically Modified
      • Microbes and More
      • New Species
      • Zoology
      • ... more topics
      Earth & Climate
      • Climate
      • Earthquakes
      • Environment
      • Geography
      • Geology
      • Global Warming
      • Hurricanes
      • Ozone Holes
      • Pollution
      • Weather
      • ... more topics
      Fossils & Ruins
      • Ancient Civilizations
      • Anthropology
      • Archaeology
      • Dinosaurs
      • Early Humans
      • Early Mammals
      • Evolution
      • Lost Treasures
      • Origin of Life
      • Paleontology
      • ... more topics
  • Society
    • View all the latest top news in the social sciences & education,
      or browse the topics below:
      Science & Society
      • Arts & Culture
      • Consumerism
      • Economics
      • Political Science
      • Privacy Issues
      • Public Health
      • Racial Disparity
      • Religion
      • Sports
      • World Development
      • ... more topics
      Business & Industry
      • Biotechnology & Bioengineering
      • Computers & Internet
      • Energy & Resources
      • Engineering
      • Medical Technology
      • Pharmaceuticals
      • Transportation
      • ... more topics
      Education & Learning
      • Animal Learning & Intelligence
      • Creativity
      • Educational Psychology
      • Educational Technology
      • Infant & Preschool Learning
      • Learning Disorders
      • STEM Education
      • ... more topics
  • Quirky
    • Top News
    • Human Quirks
    • Odd Creatures
    • Bizarre Things
    • Weird World
Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

  • Email Newsletters
  • RSS Feeds
Follow Us

Keep up to date with the latest news from ScienceDaily via social networks:

  • Facebook
  • Twitter
  • LinkedIn
Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

  • Leave Feedback
  • Contact Us
About This Site  |  Staff  |  Reviews  |  Contribute  |  Advertise  |  Privacy Policy  |  Editorial Policy  |  Terms of Use
Copyright 2020 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners.
Content on this website is for information only. It is not intended to provide medical or other professional advice.
Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners.
Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.
— CCPA: Do Not Sell My Information — — GDPR: Privacy Settings —