Here\'s how diabetes causes muscle loss

Here's how diabetes causes muscle loss

ANI 

According to a new study published in the of JCI Insight, elevated blood sugar levels leads to and two protein, WWP1 and KLF15, play key roles in this phenomenon. Notably, mellitus is associated with various problems including decline in mass.

Muscle mass decline associated with ageing impairs our physical activity, making us susceptible to a variety of problems and thus leading to shortened lifespans.

Age-dependent muscle mass decline and the consequent impairment of physical activity is known as "sarcopenia", a serious burden in aging societies.

Ogawa's research team made the surprising discovery that a rise in blood sugar levels triggers the decline in muscle mass, and uncovered the important roles of two proteins in this phenomenon.

They found that the abundance of transcription factor KLF15 increased in of diabetic mice, and mice that lack KLF15 specifically in muscle were resistant to diabetes-induced mass decline (Figure 1). These results indicate that diabetes-induced muscle loss is attributable to increased amounts of KLF15.

The team investigated the mechanism for how the abundance of KLF15 is increased in skeletal muscle of diabetic mice. They found that elevation of blood sugar levels slows down the degradation of KLF15 protein, which leads to an increased amount of this protein. Ogawa's team also discovered that a protein called WWP1 plays a key role in regulating the degradation of KLF15 protein.

This study uncovered for the first time that elevation of blood sugar levels triggers muscle mass decline, and that the two proteins WWP1 and KLF15 contribute to diabetes-induced muscle mass decline.

As well as mellitus, other conditions such as physical inactivity or ageing result in muscle mass loss. The proteins KLF15 and WWP, which have been shown to contribute to diabetes-induced muscle mass loss, may also be related to other causes of muscle loss.

Currently, no drug is available for the treatment of muscle loss.

Professor Ogawa comments: "If we develop a drug that strengthens the function of WWP1 or weakens the function of KLF15, it would lead to a groundbreaking new treatment".

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

First Published: Sun, February 24 2019. 11:32 IST