Nanowires that mimic neurons developed

Press Trust of India  |  Berlin 

Scientists have developed a that functions similar to a biological nerve cell, an advance that could pave the way for building processors that mimic the human

The component is able to both save and process information, as well as receive numerous signals in parallel.

"Our devices made from zinc oxide crystals can inherently process and even store information, as well as being extremely small and efficient," said from the (PGI) in

Researchers from and in produced a memristive element made from

These could be used to build bioinspired "neuromorphic" processors, able to take over the diverse functions of biological synapses and neurons.

For years memristive cells have been ascribed the best chances of being capable of taking over the function of neurons and synapses in bioinspired computers.

They alter their electrical resistance depending on the intensity and direction of the electric current flowing through them.

In contrast to conventional transistors, their last resistance value remains intact even when the electric current is switched off. Memristors are thus fundamentally capable of learning.

In order to create these properties, scientists used a single zinc oxide measuring about a ten-thousandth of a millimeter in size.

This type of nanowire is over a thousand times thinner than a human hair. The resulting memristive component not only takes up a tiny amount of space, but also is able to switch much faster than

offer promising novel physical properties compared to other solids and are used among other things in the development of new types of solar cells, sensors, batteries and computer chips, researchers said.

Their manufacture is comparatively simple. result from the evaporation deposition of specified materials onto a suitable substrate, where they practically grow of their own accord.

In order to create a functioning cell, both ends of the nanowire must be attached to suitable metals, in this case platinum and silver, researchers said.

The metals function as electrodes, and in addition, release ions triggered by an appropriate electric current. The are able to spread over the surface of the wire and build a bridge to alter its conductivity, they said.

Components made from single nanowires are, however, still too isolated to be of practical use in chips.

The next step for the researchers is to produce and study a memristive element, composed of a larger, relatively easy to generate group of several hundred nanowires offering more exciting functionalities.

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

First Published: Thu, December 06 2018. 16:15 IST