Nvidia Transforms Standard Video Into Slow Motion Using AI

Nvidia is back at it again with another awesome demo of applied machine learning: artificially transforming standard video into slow motion – they’re so good at showing off what AI can do that anyone would think they were trying to sell hardware for it.

Though most modern phones and cameras have an option to record in slow motion, it often comes at the expense of resolution, and always at the expense of storage space. For really high frame rates you’ll need a specialist camera, and you often don’t know that you should be filming in slow motion until after an event has occurred. Wouldn’t it be nice if we could just convert standard video to slow motion after it was recorded?

That’s just what Nvidia has done, all nicely documented in a paper. At its heart, the algorithm must take two frames, and artificially create one or more frames in between. This is not a manual algorithm that interpolates frames, this is a fully fledged deep-learning system. The Convolutional Neural Network (CNN) was trained on over a thousand videos – roughly 300k individual frames.

Since none of the parameters of the CNN are time-dependent, it’s possible to generate as many intermediate frames as required, something which sets this solution apart from previous approaches.  In some of the shots in their demo video, 30fps video is converted to 240fps; this requires the creation of 7 additional frames for every pair of consecutive frames.

The video after the break is seriously impressive, though if you look carefully you can see the odd imperfection, like the hockey player’s skate or dancer’s arm. Deep learning is as much an art as a science, and if you understood all of the research paper then you’re doing pretty darn well. For the rest of us, get up to speed by wrapping your head around neural networks, and trying out the simplest Tensorflow example.

3 thoughts on “Nvidia Transforms Standard Video Into Slow Motion Using AI

  1. This is cool for making cool demos, but not useful for anything where slow motion is actually useful. It can’t add information that isn’t there, so for answering questions like, Who won the race? or, Was the bar grounded before the wicket was broken, this is literally just making it up. It won’t stop people trying to use it to “prove” their team should have won, though.

  2. Is ‘Deep Learning” like going to university, then working in industry for some time or more like standardised extrapolation using a cost effective set of ‘rules’. The special effect is fun but the marketing speak is atrocious.

  3. I think this is deeply disturbing.

    Let me explain. We’re seeing this kind of approach already applied in photography: the tiny sensors in smartphones aren’t up to the task of taking good photos. Plus, the photographers are folks like you and me, and not highly trained experts. So taken face-value, the results, as-is would be horribly mushy things. You can’t sell a premium smartphone like that.

    But those smartphones have processing power…

    That’s all that “…taken with an iPhone 6” thing. There’s already a lot of canned models generated with machine learning in those things.

    Half in jest I tell to my friends: actually the smartphone doesn’t need a camera sensor at all. Just its geocoordinates and current attitude (accelerometer + compass), a bit of Google Street View, a dash of video surveillance data (enough cameras with open ports, ask Shodan), and Da Goog knows how the scene should look like.

    Now to the disturbing part: those things aren’t showing us “what’s there”, but “what the model ‘thinks’ is there”, without us suck^H^H^H^H end-users having much insight in, let alone control over that model (heck, the device manufacturer itself doesn’t probably know what’s exactly in those models).

    How is that going to influence our perception of the world?

    I don’t like that idea very much.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.