New 28-GHz transceiver paves the way for future 5G devices

Press Trust of India  |  Tokyo 

Scientists have designed a tiny, incredibly fast and accurate 28-gigahertz (GHz) transceiver meant for stable high-speed communications.

The importance of is evident in modern societies, and a lot of work has been done on (5G) communications as it is the upcoming big step in mobile networks.

The new standard for mobile networks promises data rates and speeds at least an order of magnitude higher than those of 4G, while even allowing for smaller antennas and (RF) transceivers because of the higher frequencies used.

Most state-of-the-art transceivers designed for employ RF phase shifters.

Accurate phase shifting is important because it allows the transceiver to guide the main lobe of the pattern of the antenna array.

In other words, it is used to "point" the antenna array towards a specific direction so that both communicating ends (transmitter and receiver) exchange signals with the highest power possible.

However, using RF phase shifters brings about certain complications and does not quite make the cut for

Scientists led by from Tokyo Institute of developed a 28-transceiver employing a local oscillator (LO) phase shifting approach.

Instead of using multiple RF phase shifters, they designed a circuit that allows the transceiver to shift the phase of a local oscillator in steps of 0.04 degree with minimal error.

In turn, this allows for a beam-steering resolution of 0.1 degree, which represents an improvement of an order of magnitude compared with previous designs, meaning that antenna array can be made to precisely point towards the desired direction.

The proposed LO phase shifting approach solves another problem of using multiple RF phase shifters: calibration complexity.

RF phase shifters require precise and complex calibration so that their gain remains invariant during phase tuning, which is a very important requirement for the correct operation of the device. The situation becomes worse as the array increases in size.

On the other hand, the proposed phase shifting approach results in a gain variation that is very close to zero over the entire 360 degree range.

The transceiver that the team designed was implemented in a circuit board measuring only 4 mm 3 mm using minimal components.

They compared the performance of their device with that of other state-of-the-art transceivers for 5G.

The data rate they achieved was about 10 per second (Gb/s) higher than that achieved with other methods, while maintaining a phase error and gain variations an order of magnitude lower.

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

First Published: Tue, June 12 2018. 18:15 IST