Advertisement

Topics

Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands

03:47 EST 2 Dec 2017 | Nature Publishing

DNA methylation is a prevalent epigenetic modification involved in transcriptional regulation and essential for mammalian development. While the genome-wide distribution of this mark has been studied to great detail, the mechanisms responsible for its correct deposition, as well as the cause for its aberrant localization in cancers, have not been fully elucidated. Here, we have compared the activity of individual DNMT3A isoforms in mouse embryonic stem and neuronal progenitor cells and report that these isoforms differ in their genomic binding and DNA methylation activity at regulatory sites. We identify that the longer isoform DNMT3A1 preferentially localizes to the methylated shores of bivalent CpG island promoters in a tissue-specific manner. The isoform-specific targeting of DNMT3A1 coincides with elevated hydroxymethylcytosine (5-hmC) deposition, suggesting an involvement of this isoform in mediating turnover of DNA methylation at these sites. Through genetic deletion and rescue experiments, we demonstrate that this isoform-specific recruitment plays a role in de novo DNA methylation at CpG island shores, with potential implications on H3K27me3-mediated regulation of developmental genes.

Original Article: Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands

NEXT ARTICLE

More From BioPortfolio on "Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands"

Quick Search
Advertisement
 

Relevant Topics

Bioinformatics
Bioinformatics is the application of computer software and hardware to the management of biological data to create useful information. Computers are used to gather, store, analyze and integrate biological and genetic information which can then be applied...

Epigenetics
The development and maintenance of an organism is orchestrated by a set of chemical reactions that switch parts of the genome off and on at strategic times and locations. Epigenetics is the study of these reactions and the factors that influence them. ...